首页
关于
Search
1
图神经网络
11 阅读
2
微服务
10 阅读
3
微信小程序
10 阅读
4
欢迎使用 Typecho
9 阅读
5
数学基础
8 阅读
默认分类
科研
自学
登录
找到
24
篇与
科研
相关的结果
- 第 2 页
2025-04-16
陈茂森论文
陈茂森论文 随机移动网络系统的稳定性 马尔科夫链与网络平均度推导 1.马尔科夫链的基本概念 马尔科夫链描述的是这样一种随机过程:系统在若干个可能的状态中变化,下一时刻所处状态只依赖于当前状态,而与过去的状态无关,这就是所谓的“无记忆性”或马尔科夫性。 无记忆性意味着,对于任何 $s, t \ge 0$, $$ P(T > s+t \mid T > s) = P(T > t). $$ 假设你已经等待了 $s$ 分钟,那么再等待至少 $t$ 分钟的概率,和你一开始就等待至少 $t$ 分钟的概率完全相同。 在所有概率分布里,只有指数分布 $$ P(T>t) = e^{-\lambda t} $$ 具有这种“无记忆性”特征: $$ P(T>s+t \mid T>s) = \frac{P(T>s+t)}{P(T>s)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(T>t). $$ 链路状态的马尔科夫模型 考虑网络中每条链路的动态行为,其状态空间为: 状态0:链路断开 状态1:链路连通 定义概率函数: $p_1(t)$:时刻 $t$ 处于连通状态的概率 $p_0(t) = 1 - p_1(t)$:断开概率 同时,我们假设链路从一个状态转移到另一个状态需要等待一段时间,这段等待时间通常服从指数分布(论文中通过 KS 检验确认): 从断开(0)到连通(1)的等待时间 $T_{01} \sim \text{Exp}(\lambda_{01})$ 从连通(1)到断开(0)的等待时间 $T_{10} \sim \text{Exp}(\lambda_{10})$ 其中,$\lambda_{01}$ 和 $\lambda_{10}$ 为转移速率,表示单位时间内事件(转移)发生的平均次数 2.推导单条链路的连通概率 根据连续时间马尔科夫链的理论,我们可以写出状态转移的微分方程。对于状态1(连通状态),概率 $p_1(t)$ 的变化率由两个部分组成: 当链路处于状态0时,以速率 $\lambda_{01}$ 变为状态1。这部分概率增加的速率为 $$ \lambda_{01} , p_0(t)=\lambda_{01} (1-p_1(t)). $$ 当链路处于状态1时,以速率 $\lambda_{10}$ 转换为状态0。这部分使 $p_1(t)$ 减少,其速率为 $$ \lambda_{10} , p_1(t). $$ 所以,$p_1(t)$ 的微分方程写成: $$ \frac{d p_1(t)}{dt} = \lambda_{01} \, (1-p_1(t)) - \lambda_{10} \, p_1(t). $$ 这个方程可以整理为: $$ \frac{d p_1(t)}{dt} + (\lambda_{01}+\lambda_{10}) \, p_1(t) = \lambda_{01}. $$ 这其实是一个一阶线性微分方程,其标准求解方法是求解其齐次解与非齐次解。 3. 求解微分方程 整个微分方程的通解为: $$ p_1(t)= \frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}} + C\, e^{-(\lambda_{01}+\lambda_{10})t}. $$ 利用初始条件 $p_1(0)=p_1^0$(初始时刻链路连通的概率),我们可以求出 $C$: 即 $$ C = p_1^0 -\frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}}. $$ 所以,链路在任意时刻 $t$ 连通的概率为: $$ p_1(t)= \frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}} + \left( p_1^0 -\frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}} \right)e^{-(\lambda_{01}+\lambda_{10})t}. $$ 这就是单条链路的连通概率函数,描述了从任意初始条件出发,经过一段时间后,链路达到平衡状态的过程。 4.推导网络平均度的变化函数 在一个由 $N$ 个节点构成的网络中,每个节点都与其它节点进行通信(不考虑自环),因此每个节点最多有 $N-1$ 个邻居。对于任意一对节点 $i$ 和 $j$,它们之间链路连通的概率 $p_1(t)$(假设所有链路独立且同分布)。 某个节点 $i$ 在时刻 $t$ 的度 $d_i(t)$可以写作: $$ d_i(t)= \sum_{\substack{j=1 \ j\neq i}}^N p_{ij}(t), $$ 其中 $p_{ij}(t)=p_1(t)$。 因此,每个节点的期望度为: $$ E[d_i(t)]=(N-1)p_1(t). $$ 网络平均度就是对所有节点的期望度取平均,由于网络中每个节点都遵循相同统计规律,所以网络平均度可表示为: $$ \bar{d}(t) = \frac{1}{N}\sum_{i=1}^{N} E[d_i(t)] = \frac{N \cdot (N-1)p_1(t)}{N} = (N-1)p_1(t) $$ 将我们前面得到的 $p_1(t)$ 表达式代入,就得到网络平均度随时间变化的表达式: $$ \bar{d}(t)= (N-1)\left[ \frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}} + \left( p_1^0 -\frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}} \right)e^{-(\lambda_{01}+\lambda_{10})t}\right]. $$ 这就是网络平均度的变化函数: 网络开始时每条链路的连通概率为 $p_1^0$ 这种调整过程符合指数衰减规律,即偏离平衡值的部分按 $e^{-(\lambda_{01}+\lambda_{10})t}$ 衰减 当 $t$ 趋向无穷大时,指数项 $e^{-(\lambda_{01}+\lambda_{10})t}$ 衰减为0,网络平均度趋向于 $(N-1)\frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}}$,这就是网络达到平衡状态后的理论平均度。 特征信号参数的平稳性 证明系统在平衡态下具有统计上的稳定性。 从节点空间分布证明平稳性。 设节点在模型区域的坐标为 $(X,Y)$,其分布概率密度函数写为 $$ f(x,y). $$ 那么节点在模型子区域 $R_1$ 中出现的概率为 $$ P_{R_1}=\int_{R_1} f(x,y) \,dx\,dy. $$ 在平衡状态下,理论上节点的位置分布 $f(x,y)$ 保持不变,即每个区域内节点出现的概率 $P_{R_1}$ 是常数,不随时间变化。证明在平衡状态下节点分布稳定。 扰动后的恢复能力 静止节点分布特性满足均匀分布,概率密度函数为 $g(x,y)$; 运动节点的概率密度函数为 $h(x,y)$; 在时刻 $t_0$ 时,网络中共有 $N$ 个节点,其中有 $s$ 个静止,故静止节点的比例为 $p=\frac{s}{N}$。 节点整体的分布概率密度函数可写为 $$ f(x,y)=p\, g(x,y)+(1-p)\, h(x,y). $$ 在平衡状态下,$p$ 的理论值为一个常数,所以 $f(x,y)$ 不随时间变化,从而网络连通度稳定。 接下来,考虑外界扰动的影响:假设在时刻 $t_1$ 新加入 $m$ 个符合均匀分布的节点, 扰动后的总分布($t_1$时刻后) 新加入的 $m$ 个节点是静止的,其分布为 $g(x,y)$ 此时网络的总节点数 $N+m$: 静止节点总数:$s+m$ 运动节点总数:$N-s$(原有运动节点数不变) 因此,扰动后的分布为: $$ f(x,y,t_1) = \frac{s + m}{N + m} g(x,y) + \frac{N - s}{N + m} h(x,y) $$ $$ f(x,y,t_1) = p' \cdot g(x,y) + (1-p') \cdot h(x,y) $$ 其中 $p' = \frac{s + m}{N + m}$。 近似处理(当 $N, s \gg m$ 时) $$ p' = \frac{s + m}{N + m} \approx \frac{s}{N} = p $$ 因此,扰动后的分布近似为: $$ f(x,y,t_1) \approx p \cdot g(x,y) + (1-p) \cdot h(x,y) $$ 这与初始平衡态的分布相同,说明网络在扰动后恢复了平衡态。 系统稳定性分析 平衡点及误差坐标 论文第 2.1 节推导出,单条链路连通概率 $p_1(t)$ 满足 $$ \dot p_1(t) = -(\lambda_{01}+\lambda_{10})\,p_1(t) \;+\;\lambda_{01}. \tag{2‑18} $$ 网络有 $N$ 个节点,**平均度** $$ d(t) = (N-1)\,p_1(t). $$ 设平衡连通概率 $p_1^*$ 满足 $\dot p_1=0$,解得 **平衡点** $$ p_1^* = \frac{\lambda_{01}}{\lambda_{01}+\lambda_{10}}, \quad d^* \;=\;(N-1)\,p_1^*. $$ **定义误差(偏离平衡的量)** $$ e(t)=d(t)-d^*. $$ 其中 $$ d(t)=(N-1)\,p_1(t), \qquad d^*=(N-1)\,p_1^*. $$ 将 $d$ 和 $d^*$ 代入 $$ e(t) =d(t)-d^* =(N-1)\,p_1(t)\;-\;(N-1)\,p_1^* =(N-1)\,\bigl[p_1(t)-p_1^*\bigr]. $$ 解得 $$ p_1(t)-p_1^* \;=\;\frac{e(t)}{\,N-1\,} \quad\Longrightarrow\quad p_1(t) =\frac{e(t)}{\,N-1\,}+p_1^*. $$ **误差求导** $$ \dot e(t) = \frac{d}{dt}\bigl[(N-1)(p_1-p_1^*)\bigr] = (N-1)\,\dot p_1(t), $$ 得到 $$ \dot e =(N-1)\Bigl[-(\lambda_{01}+\lambda_{10})\Bigl(\tfrac{e}{N-1}+p_1^*\Bigr) +\lambda_{01}\Bigr].\\\dot e = -(\lambda_{01}+\lambda_{10})\,e. $$ 这就是把原来以 $p_1$ 为自变量的微分方程,转写成以 "偏离平衡量" $e$ 为自变量的形式 记常数 $$ c = \lambda_{01}+\lambda_{10} >0, $$ 则误差模型就是一维线性常微分方程: $$ \dot e = -\,c\,e. $$ 构造李雅普诺夫函数 对一维系统 $\dot e=-ce$($c>0$),自然选取 $$ V(e)=e^2 $$ 作为李雅普诺夫函数,理由是: $V(e)>0$ 当且仅当 $e\neq0$; 平衡点 $e=0$ 时,$V(0)=0$。 计算 $V$ 的时间导数 对 $V$ 关于时间求导: $$ \dot V(e) = \frac{d}{dt}\bigl(e^2\bigr) = 2\,e\,\dot e = 2\,e\,\bigl(-c\,e\bigr) = -2c\,e^2. $$ 因为 $c>0$ 且 $e^2\ge0$,所以 $$ \boxed{\dot V(e)\;=\;-2c\,e^2\;\le\;0.} $$ 当 $e\neq0$ 时,$\dot V<0$; 当 $e=0$ 时,$\dot V=0$。 这正是“半负定”(negative semi-definite)的定义。 结论 李雅普诺夫第二类定理告诉我们: 若存在一个函数 $V(e)$ 在平衡点处为 0、在邻域内正定,且其导数 $\dot V(e)$ 在该邻域内为半负定,则平衡点 $e=0$(即 $d=d^*$)是稳定的。 由于我们已经构造了满足上述条件的 $V(e)=e^2$,并验证了 $\dot V(e)\le0$,故平衡态 $d=d^*$ 是 李雅普诺夫意义下稳定 的。 网络特征谱参数的估算 由于邻接矩阵不能保证半正定性,因此会产生幂迭代估算过程不能收敛的问题。需构造$A^T A$ 基于奇异值分解改进幂迭代估算(集中式) 输入:矩阵 $B = A^T A$,目标特征值数量 $k$,收敛阈值 $\delta$ 输出:前 $k$ 个特征值 $\lambda_1' \geq \lambda_2' \geq \dots \geq \lambda_k'$ 及对应特征向量 $u_1', u_2', \dots, u_k'$ 1. 初始化 随机生成初始非零向量 $v^{(0)}$,归一化: $$ v^{(0)} \gets \frac{v^{(0)}}{|v^{(0)}|_2} $$ 设置已求得的特征值数量 $n \gets 0$,剩余矩阵 $B_{\text{res}} \gets B$ 2. 迭代求前k个特征值与特征向量 While $n < k$: 幂迭代求当前最大特征值与特征向量 初始化向量 $v^{(0)}$(若 $n=0$,用随机向量;否则用与已求特征向量正交的向量) Repeat: a. 计算 $v^{(t+1)} \gets B_{\text{res}} v^{(t)}$ b. 归一化: $$ v^{(t+1)}\gets \frac{v^{(t+1)}}{|v^{(t+1)}|2} $$ c. 计算 Rayleigh 商: $$ y^{(t)} = \frac{(v^{(t)})^T B{\text{res}} v^{(t)}}{(v^{(t)})^T v^{(t)}} $$ d. Until $|y^{(t)} - y^{(t-1)}| < \delta$(收敛) 记录当前特征值与特征向量: $$ \lambda_{n+1}' \gets y^{(t)}, \quad u_{n+1}' \gets v^{(t)} $$ 收缩矩阵以移除已求特征分量 每次收缩操作将已求得的特征值从矩阵中“移除”,使得剩余矩阵的谱(特征值集合)中次大特征值“升级”为最大特征值。 更新剩余矩阵: $$ B_{\text{res}} \gets B_{\text{res}} - \lambda_{n+1}' u_{n+1}' (u_{n+1}')^T $$ 确保 $B_{\text{res}}$ 的对称性(数值修正) 增量计数 $n \gets n + 1$ 瑞利商公式 目的:求对称矩阵A的最大特征值 集中式: $$ y(k)= \frac{x(k)^T A x(k)}{x(k)^T x(k)} $$ 分布式一致性计算: $$ y(k) = \frac{\sum_{i=1}^N x_i(k) b_i(k)}{\sum_{i=1}^N x_i^2(k)} $$ 其中 $$ b_i(k) = \sum_j a_{ij} x_j(k) $$ 两者是等价的: 考虑一个简单的2×2矩阵 $$ A = \begin{pmatrix}2 & 1\\1 & 2\end{pmatrix}, \quad x = \begin{pmatrix}2\\1\end{pmatrix}. $$ 集中式计算 $$ y= \frac{x^T A x}{x^T x} = \frac{\begin{pmatrix}2 & 1\end{pmatrix} \begin{pmatrix}5\\4\end{pmatrix}}{2^2 + 1^2} = \frac{10 + 4}{5} = \frac{14}{5} = 2.8. $$ 分布式计算 各节点分别计算本地观测值 节点1的计算: $$ b_1 = a_{11}x_1 + a_{12}x_2 = 2 \cdot 2 + 1 \cdot 1 = 5. $$ 节点2的计算: $$ b_2 = a_{21}x_1 + a_{22}x_2 = 1 \cdot 2 + 2 \cdot 1 = 4. $$ 然后通过全网共识计算 $$ y = \frac{2 \cdot 5 + 1 \cdot 4}{2^2 + 1^2} = \frac{14}{5} = 2.8. $$ 主要符号表 符号 类型 含义 存储/计算位置 $n$ 下标 当前计算的奇异值序号(从0开始) 全局共识 $K$ 常量 需要计算的前$K$大奇异值总数 预设参数 $j,k$ 下标 节点编号($j$表示当前节点) 本地存储 $𝒩_j$ 集合 节点$j$的邻居节点集合 本地拓扑信息 $a_{jk}$ 矩阵元素 邻接矩阵$A$中节点$j$与$k$的连接权值 节点$j$本地存储 $v_{n,j}^{(t)}$ 向量分量 第$n$个右奇异向量在节点$j$的分量(第$t$次迭代) 节点$j$存储 $u_{n,j}$ 向量分量 第$n$个左奇异向量在节点$j$的分量 节点$j$计算存储 $\sigma_n$ 标量 第$n$个奇异值 全局共识存储 $\delta$ 标量 收敛阈值 预设参数 分布式幂迭代求前$K$大奇异对 While $n < K$: 初始化: 若 $n = 0$: 各节点$j$随机初始化 $v_{0,j}^{(0)} \sim \mathcal{N}(0,1)$ 若 $n > 0$: 分布式Gram-Schmidt正交化: $$ v_{n,j}^{(0)} \gets v_{n,j}^{(0)} - \sum_{m=0}^{n-1} \underbrace{\text{Consensus}\left(\sum_k v_{m,k} v_{n,k}^{(0)}\right)}{\text{全局内积}\langle v_m, v_n^{(0)} \rangle} v{m,j} $$ 分布式归一化: $$ v_{n,j}^{(0)} \gets \frac{v_{n,j}^{(0)}}{\sqrt{\text{Consensus}\left(\sum_k (v_{n,k}^{(0)})^2\right)}} $$ 迭代计算: Repeat: a. 第一轮通信(计算$z=Av$): $$ z_j^{(t)} = \sum_{k \in 𝒩_j} a_{jk} v_{n,k}^{(t)} \quad \text{(邻居交换$v_{n,k}^{(t)}$)} $$ b. 第二轮通信(计算$y=A^T z$): $$ y_j^{(t+1)} = \sum_{k \in 𝒩_j} a_{kj} z_k^{(t)} \quad \text{(邻居交换$z_k^{(t)}$)} $$ c. 隐式收缩($n>0$时): $$ y_j^{(t+1)} \gets y_j^{(t+1)} - \sum_{m=0}^{n-1} \sigma_m^2 v_{m,j} \cdot \underbrace{\text{Consensus}\left(\sum_k v_{m,k} y_k^{(t+1)}\right)}{\text{投影系数计算}} $$ d. 归一化: $$ v{n,j}^{(t+1)} = \frac{y_j^{(t+1)}}{\sqrt{\text{Consensus}\left(\sum_k (y_k^{(t+1)})^2\right)}} $$ e. 计算Rayleigh商: $$ \lambda^{(t)} = \text{Consensus}\left(\sum_k v_{n,k}^{(t)} y_k^{(t+1)}\right) $$ f. 终止条件: $$ \text{If } \frac{|\lambda^{(t)} - \lambda^{(t-1)}|}{|\lambda^{(t)}|} < \delta \text{ then break} $$ 保存结果: $$ \sigma_n = \sqrt{\lambda^{(\text{final})}}, \quad v_{n,j} = v_{n,j}^{(\text{final})} $$ 所有节点同步 $n \gets n + 1$ 分布式计算左奇异向量$u_{n,j}$ 对于邻接矩阵 $A \in \mathbb{R}^{N \times N}$,其奇异值分解为: $$ A = U \Sigma V^T $$ 其中: $U$ 的列向量 ${u_n}$ 是左奇异向量 $V$ 的列向量 ${v_n}$ 是右奇异向量 $\Sigma$ 是对角矩阵,元素 $\sigma_n$ 为奇异值 左奇异向量的定义关系: $$ A v_n = \sigma_n u_n \quad \Rightarrow \quad u_n = \frac{1}{\sigma_n} A v_n $$ 展开为分量形式(对第 $j$ 个分量): $$ u_{n,j} = \frac{1}{\sigma_n} \sum_{k=1}^N a_{jk} v_{n,k} $$ 输入:$\sigma_n$, $v_{n,j}$(来自幂迭代最终结果) For $n = 0$ to $K-1$: 本地计算: $$ u_{n,j} = \frac{1}{\sigma_n} \sum_{k \in 𝒩_j} a_{jk} v_{n,k} \quad \text{(需邻居节点发送$v_{n,k}$)} $$ 正交归一化: For $m = 0$ to $n-1$: $$ u_{n,j} \gets u_{n,j} - \text{Consensus}\left(\sum_k u_{m,k} u_{n,k}\right) \cdot u_{m,j} $$ 归一化: $$ u_{n,j} \gets \frac{u_{n,j}}{\sqrt{\text{Consensus}\left(\sum_k u_{n,k}^2\right)}} $$ 分布式重构邻接矩阵$A$ 输入:$\sigma_n$, $u_{n,j}$, $v_{n,k}$ For 每个节点$j$并行执行: 对每个邻居$k \in 𝒩_j$: 请求节点$k$发送$v_{n,k}$($n=0,...,K-1$) 计算: $$ a_{jk} = \sum_{n=0}^{K-1} \sigma_n u_{n,j} v_{n,k} $$ 非邻居元素: $$ a_{jk} = 0 \quad \text{for} \quad k \notin 𝒩_j $$ 非稳态下动态特征参数的估算 一致性控制策略 异步更新模型 节点仅在离散时刻 $t_k^i$ 接收邻居信息,更新自身状态 $x_i(t)$。 各节点的状态更新时刻是独立的 延时处理 若检测到延时,节点选择最新收到的邻居状态替代旧值(避免使用过期数据)。 一致性协议设计 无时延系统 $$ \dot i = \sum{j \in N(t_k^i, i)} a_{ij}(t_k^i) \left( x_j(t_k^i) - x_i(t) \right) $$ 参数 含义 $\dot _i$ 节点 $i$ 的状态变化率(导数),表示 $x_i$ 随时间的变化速度。 $x_i(t)$ 节点 $i$ 在时刻 $t$ 的本地状态值(如特征估计、传感器数据等)。 $x_j(t_k^i)$ 节点 $i$ 在 $t_k^i$ 时刻收到的邻居节点 $j$ 的状态值。 $N(t_k^i, i)$ 节点 $i$ 在 $t_k^i$ 时刻的邻居集合(可直接通信的节点)。 $a_{ij}(t_k^i)$ 权重因子,控制邻居 $j$ 对节点 $i$ 的影响权重,满足 $\sum_j a_{ij} = 1$。 有时延系统 $$ \dot i = \sum{j \in N(t_k^i, i)} a_{ij}(t_k^i) \left( x_j(t_k^i - \tau_{ij}^k) - x_i(t) \right) $$ 参数 含义 $\tau_{ij}^k$ 节点 $j$ 到 $i$ 在时刻 $t_k^i$ 的信息传输延时。 $t_k^i - \tau_{ij}^k$ 节点 $i$ 实际使用的邻居状态 $x_j$ 的有效时刻(扣除延时)。 权重$\alpha_{ij}$ $$ \text{有有效邻居时 } a_{ij}(t) = \begin{cases} \frac{\alpha_{ij}(t_k^i)}{\sum_{s \in N(t_k^i, i)} \alpha_{is}(t_k^i)}, & \text{若 } j \in N(t_k^i, i) \ 0, & \text{若 } j \notin N(t_k^i, i) \end{cases} $$ $$ \text{无有效邻居时 } a_{ij}(t) = \begin{cases} 1, & \text{若 } j = i \ 0, & \text{若 } j \neq i \end{cases} $$ 通信拓扑定义 引入 $G^0(t)$:实际成功通信的瞬时拓扑(非理想链路 $G(t)$),强调有效信息传递而非物理连通性。 收敛性分析 动态网络的收敛条件: 在节点移动导致的异步通信和随机延时下,只要网络拓扑满足有限时间内的联合连通性(即时间窗口内信息能传递到全网),所有节点的状态 $x_i$ 最终会收敛到同一全局值。 (平均代数连通度 > 0 == 动态网络拓扑的平均拉普拉斯矩阵的第二小特征值>0 ) 无需时刻连通:允许瞬时断连,但长期需保证信息能通过动态链路传递。 基于 UKF 的滤波估算 KF EKF UKF 线性要求 严格线性 弱非线性 强非线性 可微要求 - 必须可微 不要求 计算复杂度 低 中 中 适用场景 线性系统 平滑非线性 剧烈非线性 本文基于UKF: 采用**确定性采样(Sigma点)**直接近似非线性分布 完全规避对 f(x) 和 h(x) 的求导需求 保持高斯系统假设 允许函数不连续/不可微 适应拓扑突变等非线性情况 UKF 具体步骤 符号说明 $i$: 节点索引,$N$ 为总节点数 $x_i(k)$: 节点 $i$ 在时刻 $k$ 的状态分量 (相当于$x$) $b_i(k)$: 节点 $i$ 的本地状态估计值 (相当于$Ax$) $a_{ij}$: 邻接矩阵元素(链路权重) $Q_k, R_k$: 过程噪声与观测噪声协方差 $\mathcal{X}_{i,j}$: 节点 $i$ 的第 $j$ 个 Sigma 点 $W_j^{(m)}, W_j^{(c)}$: Sigma 点权重(均值和协方差) Step 1: 分布式初始化 节点状态初始化: 每个节点 $i$ 随机生成初始状态分量 $x_i(0)$。 本地状态估计 $b_i(0)$ 初始化为 $x_i(0)$。 Step 2: 生成 Sigma 点(确定性采样) 在每个节点本地执行: 计算 Sigma 点: $$ \begin{aligned} \mathcal{X}{i,0} &= \hat{b}{i,k-1} \ \mathcal{X}{i,j} &= \hat{b}{i,k-1} + \left( \sqrt{(n+\lambda) P_{i,k-1}} \right)j \quad (j=1,\dots,n) \ \mathcal{X}{i,j+n} &= \hat{b}{i,k-1} - \left( \sqrt{(n+\lambda) P{i,k-1}} \right)_j \quad (j=1,\dots,n) \end{aligned} $$ $\lambda = \alpha^2 (n + \kappa) - n$(缩放因子,$\alpha$ 控制分布范围,$\kappa$ 通常取 0) $\sqrt{(n+\lambda) P}$ 为协方差矩阵的平方根(如 Cholesky 分解) 计算 Sigma 点权重: $$ \begin{aligned} W_0^{(m)} &= \frac{\lambda}{n + \lambda} \quad &\text{(中心点均值权重)} \ W_0^{(c)} &= \frac{\lambda}{n + \lambda} + (1 - \alpha^2 + \beta) \quad &\text{(中心点协方差权重)} \ W_j^{(m)} = W_j^{(c)} &= \frac{1}{2(n + \lambda)} \quad (j=1,\dots,2n) \quad &\text{(对称点权重)} \end{aligned} $$ $\beta$ 为高阶矩调节参数(高斯分布时取 2 最优) Step 3: 预测步骤(时间更新) 传播 Sigma 点: $$ \mathcal{X}{i,j,k|k-1}^* = f(\mathcal{X}{i,j,k-1}) + q_k \quad (j=0,\dots,2n) $$ $f(\cdot)$ 为非线性状态转移函数 $q_k$ 为过程噪声 ,反映网络拓扑动态变化(如节点移动导致的链路扰动)。 计算预测均值和协方差: $$ \hat{b}{i,k|k-1} = \sum{j=0}^{2n} W_j^{(m)} \mathcal{X}_{i,j,k|k-1}^* $$ $$ P_{i,k|k-1} = \sum_{j=0}^{2n} W_j^{(c)} \left( \mathcal{X}{i,j,k|k-1}^* - \hat{b}{i,k|k-1} \right) \left( \mathcal{X}{i,j,k|k-1}^* - \hat{b}{i,k|k-1} \right)^T + Q_k $$ $Q_k$ 为过程噪声协方差 Step 4: 分布式观测生成 邻居状态融合: 节点 $ i $ 从邻居 $ j $ 获取其本地观测值 $ b_{j,\text{local}}(k) $: $$ b_{j,\text{local}}(k) = \sum_{l=1}^N a_{jl} x_l(k) \quad \text{(节点 $ j $ 对邻居状态的加权融合)} $$ 节点 $ i $ 综合邻居信息生成自身观测: $$ b_i^H(k) = \sum_{j=1}^N a_{ji} b_{j,\text{local}}(k) + r_k $$ 注:$ r_k $ 为通信噪声,反映信息传输误差(如延时、丢包)。 Step 5: 观测更新(测量更新) 观测 Sigma 点: $$ \mathcal{Z}{i,j,k|k-1} = h(\mathcal{X}{i,j,k|k-1}^*) + r_k \quad (j=0,\dots,2n) $$ $h(\cdot)$ 为非线性观测函数 计算观测统计量: $$ \hat{z}{i,k|k-1} = \sum{j=0}^{2n} W_j^{(m)} \mathcal{Z}_{i,j,k|k-1} $$ $$ P_{i,zz} = \sum_{j=0}^{2n} W_j^{(c)} \left( \mathcal{Z}{i,j,k|k-1} - \hat{z}{i,k|k-1} \right) \left( \mathcal{Z}{i,j,k|k-1} - \hat{z}{i,k|k-1} \right)^T + R_k $$ $$ P_{i,xz} = \sum_{j=0}^{2n} W_j^{(c)} \left( \mathcal{X}{i,j,k|k-1}^* - \hat{b}{i,k|k-1} \right) \left( \mathcal{Z}{i,j,k|k-1} - \hat{z}{i,k|k-1} \right)^T $$ $R_k$ 为观测噪声协方差 计算卡尔曼增益并更新状态: $$ K_{i,k} = P_{i,xz} P_{i,zz}^{-1} $$ $$ \hat{b}{i,k|k} = \hat{b}{i,k|k-1} + K_{i,k} \left( b_i^H(k) - \hat{z}_{i,k|k-1} \right) $$ $$ P_{i,k|k} = P_{i,k|k-1} - K_{i,k} P_{i,zz} K_{i,k}^T $$ Step 6: 全局一致性计算 瑞利商计算: 所有节点通过一致性协议交换 $\hat{b}{i,k|k}$,计算全局状态: $$ y(k) = \frac{\sum{i=1}^N x_i(k) \hat{b}{i,k|k}}{\sum{i=1}^N x_i^2(k)} $$ 正交化: 更新本地状态分量(相当于幂迭代$x=Ax$再归一化): $$ x_i(k+1) = \frac{\hat{b}_{i,k|k}}{|\hat{b}(k)|_2} $$ Step 7: 收敛判断 若 $y(k)$ 收敛,输出 $\sigma = \sqrt{y(k)}$;否则返回 Step 2。 稳态下动态特征参数的估算 稳态下,网络拓扑变化趋于平稳,奇异值的理论曲线不再随时间变化(实际值因噪声围绕理论值波动)。此时采用集中式多观测值卡尔曼滤波 多观测值滤波算法 核心思想:利用相邻奇异值的有序性约束($\sigma_{n-1} \leq \sigma_n \leq \sigma_{n+1}$),构造双观测值作为上下界,限制估计范围。 观测值生成: 对第$n$大奇异值$\sigma_n$,其观测值$y_n$由相邻奇异值线性组合: $$ y_n = C_1 \sigma_{n-1} + C_2 \sigma_{n+1} $$ 系数$C_1, C_2$:根据$\sigma_{n-1}$和$\sigma_{n+1}$的权重动态调整(如距离比例)。 物理意义:将$\sigma_{n-1}$和$\sigma_{n+1}$作为$\sigma_n$的下界和上界,避免单观测值因噪声导致的估计偏离。 疑问: 第三章的目的是什么?先分解再重构的意义在? 状态转移函数和观测函数怎么来?UKF每次预测单奇异值,如何同时预测K个呢? 卡尔曼滤波 观测值怎么来?是否需要拟合历史数据生成观测值?还是根据第三章分布式幂迭代求真实的特征值?
科研
zy123
4月16日
0
6
0
2025-04-14
高飞论文
高飞论文 证明特征值序列为平稳的时间序列 问题设定 研究对象 设 ${\lambda_1(A)t}{t\in\mathbb Z}$ 是随时间变化的随机对称矩阵 $A_t$ 的最大特征值序列(如动态网络的邻接矩阵)。 目标 证明 ${\lambda_1(A)_t}$ 是 二阶(弱)平稳的时间序列,即 $E[\lambda_1(A)_t]=\mu_1$(与 $t$ 无关); $\operatorname{Var}[\lambda_1(A)_t]=\sigma_1^2<\infty$(与 $t$ 无关); $\operatorname{Cov}(\lambda_1(A)t,\lambda_1(A){t-k})=\gamma(k)$ 只依赖滞后 $k$。 关键假设 矩阵统计特性(引理 1) $A_t$ 为 $N\times N$ 实对称随机矩阵;元素 ${a_{ij}}{i\le j}$ 相互独立且有界:$|a{ij}|\le K$。 非对角元素:$E[a_{ij}]=\mu>0,\ \operatorname{Var}(a_{ij})=\sigma^2$;对角元素:$E[a_{ii}]=v$。 $N$ 足够大时 $$ E[\lambda_1(A_t)]\approx(N-1)\mu+v+\tfrac{\sigma^2}{\mu}\equiv\mu_1,\qquad \operatorname{Var}[\lambda_1(A_t)]\approx2\sigma^2\equiv\sigma_1^2 . $$ 说明: $\sigma^2$ 这是随机矩阵 $A_t$ 的非对角线元素 $a_{ij}$ ($i \neq j$) 的方差,即 $$ \text{Var}(a_{ij}) = \sigma^2. $$ 根据引理1的假设,所有非对角线元素独立同分布,均值为 $\mu$,方差为 $\sigma^2$。 $\sigma_1^2$ 这是最大特征值 $\lambda_1(A_t)$ 的方差,即 $$ \text{Var}[\lambda_1(A_t)] \equiv \sigma_1^2. $$ 当 $N$ 足够大时,$\sigma_1^2$ 近似为 $2\sigma^2$。 时间序列模型 对去中心化序列 $$ \tilde z_t:=\lambda_1(A)t-\mu_1 $$ 假设其服从 AR(1) $$ \tilde z_t=\rho,\tilde z{t-1}+\varepsilon_t,\qquad \varepsilon_t\stackrel{\text{i.i.d.}}{\sim}\text{WN}(0,\sigma_\varepsilon^{2}),\ \ |\rho|<1, $$ 且 $\varepsilon_t$ 与历史 ${\tilde z_{s}}_{s<t}$ 独立。 证明主特征值序列平稳 (1) 均值恒定性的推导 去中心化后 $E[\tilde z_t]=0$。因此 $$ E[\lambda_1(A)_t]=E[\tilde z_t]+\mu_1=\mu_1, $$ 与 $t$ 无关,满足第一条。 (2) 方差恒定 AR(1)模型定义为: $$ z_t = \rho z_{t-1} + \varepsilon_t $$ $$ \begin{aligned} z_t &= \varepsilon_t + \rho z_{t-1} \\ &= \varepsilon_t + \rho (\varepsilon_{t-1} + \rho z_{t-2}) \\ &= \varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + \cdots \\ &= \sum_{j=0}^\infty \rho^j \varepsilon_{t-j} \end{aligned} $$ $$ \text{Var}(z_t) = \text{Var}\left( \sum_{j=0}^\infty \rho^j \varepsilon_{t-j} \right)= \sum_{j=0}^\infty \rho^{2j} \text{Var}(\varepsilon_{t-j}) $$ 由于$\text{Var}(\varepsilon_{t-j}) = \sigma_\varepsilon^2$ 对所有 $j$ 成立, $$ = \sigma_\varepsilon^2 \sum_{j=0}^\infty \rho^{2j}=\frac{\sigma_\varepsilon^2}{1-\rho^2} $$ $|\rho| < 1$ 是保证级数收敛和方差有限的充要条件。 根据引理1,$\text{Var}[\lambda_1(A_t)] \approx 2\sigma^2 = \sigma_1^2$。为使模型与理论一致,可设: $$ \sigma_\varepsilon^2 = (1 - \rho^2) \cdot 2\sigma^2 $$ 此时: $$ \text{Var}[\tilde{z}_t] = 2\sigma^2 = \sigma_1^2 $$ (3) 协方差仅依赖滞后 $k$ 对 $k\ge0$, $$ \gamma(k):=\operatorname{Cov}(\tilde z_t,\tilde z_{t-k}) =\rho^{k}\sigma_{\tilde z}^{2}, $$ 仅含 $k$ 而与 $t$ 无关;于是 $$ \operatorname{Cov}(\lambda_1(A)_t,\lambda_1(A)_{t-k})=\gamma(k), $$ 满足第三条。 (4) 平稳性的核心条件 |ρ| < 1 是关键条件 直观上:$\rho$ 越小,当前特征值对过去的依赖越弱; $\rho=\pm1$ 会让方差发散,不可能稳态。 噪声独立性:$\varepsilon_t$ 为白噪声,确保新信息与历史无关。 证明剩余特征值平稳(大模型说不可取): 1. 收缩操作(Deflation)的严格定义 设 $A_t$ 的谱分解为: $$ A_t = \sum_{i=1}^N \lambda_i u_i u_i^\top, $$ 其中 $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_N$,且 $\{u_i\}$ 是标准正交基。 第一次收缩: 定义剩余矩阵 $A_{t,2} = A_t - \lambda_1 u_1 u_1^\top$,其性质为: 特征值:$\lambda_2, \lambda_3, \dots, \lambda_N$(即移除 $\lambda_1$ 后剩余特征值不变)。 特征向量:$u_2, \dots, u_N$ 保持不变(因 $u_1$ 与其他特征向量正交)。 第 $k$ 次收缩: 递归定义: $$ A_{t,k+1} = A_{t,k} - \lambda_k u_k u_k^\top, $$ 剩余矩阵 $A_{t,k+1}$ 的特征值为 $\lambda_{k+1}, \dots, \lambda_N$。 每次收缩移除当前主成分,剩余矩阵的特征值是原始矩阵中未被移除的部分。 2. 剩余特征值的统计特性 目标:证明 ${\lambda_k(A_t)}_{t \in \mathbb{Z}}$ 对 $k \geq 2$ 也是弱平稳的。 (1) 均值恒定性 剩余矩阵的期望: 由线性性: $$ E[A_{t,k+1}] = E[A_t] - \sum_{i=1}^k E[\lambda_i u_i u_i^\top]. $$ 若 $A_t$ 的元素分布时不变,且 $\lambda_i$ 和 $u_i$ 的期望稳定(由主特征值的平稳性保证),则 $E[A_{t,k+1}]$ 与 $t$ 无关。 特征值期望: 对剩余矩阵 $A_{t,k+1}$,其主特征值 $\lambda_{k+1}(A_t)$ 的期望近似为: $$ E[\lambda_{k+1}(A_t)] \approx (N-k-1)\mu + v + \frac{\sigma^2}{\mu} \equiv \mu_{k+1}, $$ 其中 $(N-k-1)\mu$ 是剩余非对角元素的贡献(假设每次收缩后非对角元素统计特性不变)。 (2) 方差恒定性 剩余矩阵的方差: 收缩操作通过正交投影移除 $\lambda_k u_k u_k^\top$,因此剩余矩阵 $A_{t,k+1}$ 的元素方差仍为 $\sigma^2$(对角元素可能需调整)。 由引理1的推广: $$ \text{Var}[\lambda_{k+1}(A_t)] \approx 2\sigma^2 \equiv \sigma_{k+1}^2. $$ 动态模型: 假设去中心化序列 $\tilde{z}{k+1,t} = \lambda{k+1}(A_t) - \mu_{k+1}$ 服从AR(1): $$ \tilde{z}{k+1,t} = \rho{k+1} \tilde{z}{k+1,t-1} + \varepsilon{k+1,t}, \quad |\rho_{k+1}| < 1, $$ 稳态方差为: $$ \sigma_{\tilde{z}{k+1}}^2 = \frac{\sigma{\varepsilon_{k+1}}^2}{1-\rho_{k+1}^2} = \sigma_{k+1}^2. $$ (3) 协方差仅依赖滞后 $m$ 协方差函数: $$ \gamma_{k+1}(m) = \text{Cov}(\tilde{z}{k+1,t}, \tilde{z}{k+1,t-m}) = \rho_{k+1}^{|m|} \sigma_{\tilde{z}_{k+1}}^2. $$ 仅依赖 $m$,与 $t$ 无关。 3. 递推证明的完整性 归纳基础: $k=1$ 时(主特征值),平稳性已证。 归纳假设: 假设 $\lambda_k(A_t)$ 的平稳性成立,即: $E[\lambda_k(A_t)] = \mu_k$(常数), $\text{Var}[\lambda_k(A_t)] = \sigma_k^2$(有限), $\text{Cov}(\lambda_k(A_t), \lambda_k(A_{t-m})) = \gamma_k(m)$。 归纳步骤: 通过收缩操作,$\lambda_{k+1}(A_t)$ 成为 $A_{t,k+1}$ 的主特征值。 若 $A_{t,k+1}$ 满足与 $A_t$ 相同的统计假设(独立性、有界性、时不变性),则 $\lambda_{k+1}(A_t)$ 的平稳性可类比主特征值的证明。 JB-test JB-test(Jarque-Bera test) 是一种用于检验样本数据是否服从正态分布的统计假设检验方法。这个检验特别适用于判断数据的偏度(skewness)和峰度(kurtosis)是否符合正态分布的特性。 正态分布具有以下特性: 偏度(Skewness) 为 $0$,表示数据的分布是对称的。 峰度(Kurtosis) 为 $3$,表示数据的峰度是"中等"的。 JB-test的统计量 Jarque-Bera统计量的计算公式为: $$ JB = \frac{n}{6} \left( S^2 + \frac{(K - 3)^2}{4} \right) $$ 其中: $n$ 是样本的大小。 $S$ 是样本的偏度(skewness),衡量分布的对称性。 $K$ 是样本的峰度(kurtosis),衡量分布的尖峭程度。 JB-test的分布和检验步骤 零假设($H_0$):数据服从正态分布。 备择假设($H_1$):数据不服从正态分布。 在进行检验时,首先计算 JB 统计量,然后将其与卡方分布进行比较: JB 统计量的分布近似于自由度为 $2$ 的卡方分布(当样本量较大时)。 如果 JB 统计量的值大于临界值(根据设定的显著性水平,比如 $0.05$),则拒绝零假设,即认为数据不符合正态分布。 如果 JB 统计量的值小于临界值,则无法拒绝零假设,即认为数据服从正态分布。 结论 如果 JB 统计量接近 $0$,说明数据的偏度和峰度与正态分布的期望非常接近,数据可能符合正态分布。 如果 JB 统计量远离 $0$,则说明数据的偏度或峰度与正态分布的特征差异较大,数据不符合正态分布。 特征值精度预估 1. 噪声随机变量与协方差 符号 含义 $w_i$ 第 $i$ 个过程噪声样本 $v_j$ 第 $j$ 个观测噪声样本 $Q$ 过程噪声的真实方差(协方差矩阵退化) $R$ 观测噪声的真实方差(协方差矩阵退化) 说明: 在矩阵形式的 Kalman Filter 中,通常写作 $$ w_k\sim\mathcal N(0,Q),\quad v_k\sim\mathcal N(0,R). $$ 这里为做统计检验,把 $w_i, v_j$ 当作样本,$Q,R$ 就是它们在标量情况下的方差。 2. 样本统计量 符号 含义 $N_w,;N_v$ 过程噪声样本数和观测噪声样本数 $\bar w$ 过程噪声样本均值 $\bar v$ 观测噪声样本均值 $s_w^2$ 过程噪声的样本方差估计 $s_v^2$ 观测噪声的样本方差估计 定义: $$ \bar w = \frac1{N_w}\sum_{i=1}^{N_w}w_i,\quad s_w^2 = \frac1{N_w-1}\sum_{i=1}^{N_w}(w_i-\bar w)^2, $$ $$ \bar v = \frac1{N_v}\sum_{j=1}^{N_v}v_j,\quad s_v^2 = \frac1{N_v-1}\sum_{j=1}^{N_v}(v_j-\bar v)^2. $$ 3. 方差比的 $F$ 分布区间估计 构造 $F$ 统计量 $$ F = \frac{(s_w^2/Q)}{(s_v^2/R)} = \frac{s_w^2}{s_v^2},\frac{R}{Q} \sim F(N_w-1,,N_v-1). $$ 置信区间(置信度 $1-\alpha$) 查得 $$ F_{L}=F_{\alpha/2}(N_w-1,N_v-1),\quad F_{U}=F_{1-\alpha/2}(N_w-1,N_v-1), $$ 则 $$ \begin{align*} P\Big{F_{\rm L}\le F\le F_{\rm U}\Big}=1-\alpha \quad\Longrightarrow \quad P\Big{F_{\rm L},\le\frac{s_w^2}{s_v^2},\frac{R}{Q}\le F_{\rm U},\Big}=1-\alpha. \end{align*} $$ 解出 $\frac{R}{Q}$ 的区间 $$ P\Bigl{,F_{L},\frac{s_v^2}{s_w^2}\le \frac{R}{Q}\le F_{U},\frac{s_v^2}{s_w^2}\Bigr}=1-\alpha. $$ 令 $$ \theta_{\min}=\sqrt{,F_{L},\frac{s_v^2}{s_w^2},},\quad \theta_{\max}=\sqrt{,F_{U},\frac{s_v^2}{s_w^2},}. $$ 4. 卡尔曼增益与误差上界 在标量情况下(即状态和观测均为1维),卡尔曼增益公式可简化为: $$ K = \frac{P_k H^T}{HP_k H^T + R} = \frac{HP_k}{H^2 P_k + R} $$ 针对我们研究对象,特征值滤波公式的系数都属于实数域。$P_{k-1}$是由上次迭代产生,因此可以$FP_{k-1}F^T$看作定值,则$P_k$的方差等于$Q$的方差,即: $$ \text{var}(P_k) = \text{var}(Q) $$ 令 $c = H$, $m = 1/H$(满足 $cm = 1$),则: $$ K = \frac{cP_k}{c^2 P_k + R} = \frac{1}{c + m(R/P_k)} \quad R/P_k\in[\theta_{\min}^2,\theta_{\max}^2]. $$ 则极值为 $$ K_{\max}=\frac{1}{c + m\,\theta_{\min}^2},\quad K_{\min}=\frac{1}{c + m\,\theta_{\max}^2}. $$ 通过历史数据计算预测误差的均值: $$ E(x_k' - x_k) \approx \frac{1}{M} \sum_{m=1}^{M} (x_k^{l(m)} - x_k^{(m)})\\ $$ 定义误差上界 $$ \xi =\bigl(K_{\max}-K_{\min}\bigr)\;E\bigl(x_k'-x_k\bigr) =\Bigl(\tfrac1{c+m\,\theta_{\min}^2}-\tfrac1{c+m\,\theta_{\max}^2}\Bigr) \,E(x_k'-x_k). $$ 若令 $c\,m=1$,可写成 $$ \xi =\frac{(\theta_{\max}-\theta_{\min})\,E(x_k'-x_k)} {(c^2+\theta_{\min})(c^2+\theta_{\max})}. $$ 量化噪声方差估计的不确定性,进而评估卡尔曼滤波器增益的可能波动,并据此给出滤波误差的上界. 基于时空特征的节点位置预测 在本模型中,整个预测流程分为两大模块: GCN 模块:主要用于从当前网络拓扑中提取每个节点的空间表示**。这里的输入主要包括: 邻接矩阵 $A$:反映网络中节点之间的连通关系,维度为 $N \times N$,其中 $N$ 表示节点数。(可通过第二章网络重构的方式获取) 特征矩阵 $H^{(0)}$:一般是原始节点的属性信息,如历史位置数据,其维度为 $N \times d$,其中 $d$ 是初始特征维度。 LSTM 模块:用于捕捉节点随时间变化的动态信息,对每个节点的历史运动轨迹进行序列建模,并预测未来时刻的坐标。 其输入通常是经过 GCN 模块处理后,每个节点在一段时间内获得的时空融合特征序列,维度一般为 $N \times T \times d'$,其中 $T$ 表示时间步数,$d'$ 是经过 GCN 后的特征维度。 GCN 模块 输入 邻接矩阵 $A$:维度 $N \times N$。在实际操作中,通常先加上自环形成 $$ \hat{A} = A + I. $$ 特征矩阵 $H^{(0)}$:维度 $N \times d$,每一行对应一个节点的初始特征(例如历史采样的位置信息或其他描述)。 图卷积操作 常用的图卷积计算公式为: $$ H^{(l+1)} = \sigma \Bigl(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2} H^{(l)} W^{(l)} \Bigr) $$ 其中: $\tilde{A} = A + I$ 为加上自环后的邻接矩阵, $\tilde{D}$ 为 $\tilde{A}$ 的度矩阵,定义为 $\tilde{D}{ii} = \sum{j}\tilde{A}_{ij}$; $H^{(l)}$ 表示第 $l$ 层的节点特征,初始时 $H^{(0)}$ 就是输入特征矩阵; $W^{(l)}$ 是第 $l$ 层的权重矩阵,其维度通常为 $d_l \times d_{l+1}$(例如从 $d$ 到 $d'$); $\sigma(\cdot)$ 是非线性激活函数,例如 ReLU 或 tanh。 经过一层或多层图卷积后,可以得到最终的节点表示矩阵 $H^{(L)}$(或记为 $X$),维度为 $N \times d'$。 其中: 每一行 $x_i \in \mathbb{R}^{d'}$ 表示节点 $i$ 的空间特征,这些特征综合反映了其在网络拓扑中的位置及与邻居的关系。 输出 GCN 输出:形状为 $N \times d'$;若将模型用于时序建模,则对于每个时间步,都可以得到这样一个节点特征表示。 这里 $d'>d$ 。1.高维嵌入不仅保留了绝对位置信息,还包括了网络拓扑信息。2.兼容下游LSTM任务需求。 LSTM 模块 输入数据构造 在时序预测中,对于每个节点,我们通常有一段历史数据序列。假设我们采集了最近 $T$ 个时刻的数据,然后采用“滑动窗口”的方式,预测 $T+1$、 $T+2$... 对于每个时刻 $t$,节点 $i$ 的空间特征 $x_i^{(t)} \in \mathbb{R}^{d'}$ 由 GCN 得到; 将这些特征按照时间顺序排列,得到一个序列: $$ X_i = \bigl[ x_i^{(t-T+1)},, x_i^{(t-T+2)},, \dots,, x_i^{(t)} \bigr] \quad \in \mathbb{R}^{T \times d'}. $$ 对于整个网络来说,可以将数据看作一个三维张量,维度为 $(N, T, d')$。 LSTM 内部运作 LSTM 通过内部门控机制(遗忘门 $f_t$、输入门 $i_t$ 和输出门 $o_t$)来更新其记忆状态 $C_t$ 和隐藏状态 $h_t$。公式如下 遗忘门: $$ f_t = \sigma(W_f [h_{t-1},, x_t] + b_f) $$ 输入门和候选记忆: $$ i_t = \sigma(W_i [h_{t-1},, x_t] + b_i) \quad,\quad \tilde{C}t = \tanh(W_C [h{t-1},, x_t] + b_C) $$ 记忆更新: $$ C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t $$ 输出门和隐藏状态: $$ o_t = \sigma(W_o [h_{t-1},, x_t] + b_o), \quad h_t = o_t \odot \tanh(C_t) $$ 其中,$x_t$ 在这里对应每个节点在时刻 $t$ 的 GCN 输出特征; $[h_{t-1},, x_t]$ 为连接后的向量; LSTM 的隐藏状态 $h_i \in \mathbb{R}^{d'' \times 1}$(其中 $d''$ 为 LSTM 的隐藏单元数)捕捉了时间上的依赖信息。 输出与预测 最后,经过 LSTM 处理后,我们在最后一个时间步获得最终的隐藏状态 $h_t$ 或使用整个序列的输出;接着通过一个全连接层(FC层)将隐藏状态映射到最终的预测输出。 全连接层转换公式: $$ \hat{y}i = W{\text{fc}} \cdot h_t + b_{\text{fc}} $$ 其中,假设预测的是二维坐标(例如 $x$ 和 $y$ 坐标),$W_{\text{fc}} \in \mathbb{R}^{2 \times d''}$,输出 $\hat{y}_i \in \mathbb{R}^2$ 表示节点 $i$ 在未来某个时刻(或下一时刻)的预测坐标。 若整个网络有 $N$ 个节点,则最终预测结果的输出维度为 $N \times 2$(或 $N \times T' \times 2$,如果预测多个未来时刻)。 疑问 该论文可能有点问题,每个节点只能预测自身未来位置,无法获取全局位置信息。如果先LSTM后GCN可能可以!
科研
zy123
4月14日
0
4
0
2025-04-01
凸优化问题求解
凸优化 核心概念 凸函数 定义:$f(x)$ 是凸函数当且仅当 $$ f(\theta x_1 + (1-\theta)x_2) \leq \theta f(x_1) + (1-\theta)f(x_2), \quad \forall x_1,x_2 \in \text{dom}(f), \theta \in [0,1] $$ 示例:$f(x)=x^2$, $f(x)=e^x$ 验证 $f(x) = x^2$ 是凸函数: 代入 $f(x) = x^2$: $$ (\theta x_1 + (1-\theta) x_2)^2 \leq \theta x_1^2 + (1-\theta) x_2^2 $$ 展开左边: $$ (\theta x_1 + (1-\theta) x_2)^2 = \theta^2 x_1^2 + 2\theta(1-\theta)x_1x_2 + (1-\theta)^2 x_2^2 $$ 右边: $$ \theta x_1^2 + (1-\theta) x_2^2 $$ 计算差值(右边减左边): $$ \theta x_1^2 + (1-\theta) x_2^2 - \theta^2 x_1^2 - 2\theta(1-\theta)x_1x_2 - (1-\theta)^2 x_2^2 $$ 化简: $$ = \theta(1-\theta)x_1^2 + (1-\theta)\theta x_2^2 - 2\theta(1-\theta)x_1x_2 $$ $$ = \theta(1-\theta)(x_1^2 + x_2^2 - 2x_1x_2) $$ $$ = \theta(1-\theta)(x_1 - x_2)^2 \geq 0 $$ 结论: 因为 $\theta \in [0,1]$,所以 $\theta(1-\theta) \geq 0$,且 $(x_1 - x_2)^2 \geq 0$。 因此,右边减左边 $\geq 0$,即: $$ (\theta x_1 + (1-\theta) x_2)^2 \leq \theta x_1^2 + (1-\theta) x_2^2 $$ $f(x)=x^2$ 满足凸函数的定义。 凸集 集合中任意两点的连线仍然完全包含在该集合内。换句话说,这个集合没有“凹陷”的部分。 定义:集合$X$是凸集当且仅当 $$ \forall x_1,x_2 \in X, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta)x_2 \in X $$ 示例:超平面、球体 凸优化问题标准形式 $$ \min_x f(x) \quad \text{s.t.} \quad \begin{cases} g_i(x) \leq 0 & (凸不等式约束) \\ h_j(x) = 0 & (线性等式约束) \\ x \in X & (凸集约束) \end{cases} $$ 交替方向乘子法(ADMM) Alternating Direction Method of Multipliers (ADMM) 是一种用于求解大规模优化问题的高效算法,结合了拉格朗日乘子法和分裂方法的优点。 基本概念 优化问题分解 ADMM 的核心思想是将复杂优化问题分解为多个较简单的子问题,通过引入辅助变量将原问题转化为约束优化问题,使子问题独立求解。 拉格朗日乘子 利用拉格朗日乘子处理约束条件,构造增强拉格朗日函数,确保子问题求解时同时考虑原问题的约束信息。 交替更新 通过交替更新子问题的解和拉格朗日乘子,逐步逼近原问题的最优解。 算法流程 问题分解 将原问题分解为两个子问题。假设原问题表示为: $\min_{x, z} f(x) + g(z) \quad \text{s.t.} \quad Ax + Bz = c$ 其中 $f$ 和 $g$ 是凸函数,$A$ 和 $B$ 为给定矩阵。 构造增强拉格朗日函数 引入拉格朗日乘子 $y$,构造增强拉格朗日函数: $L_\rho(x, z, y) = f(x) + g(z) + y^T(Ax+Bz-c) + \frac{\rho}{2}|Ax+Bz-c|^2$ 其中 $\rho > 0$ 控制惩罚项的权重。 交替更新 更新 $x$:固定 $z$ 和 $y$,求解 $\arg\min_x L_\rho(x, z, y)$。 更新 $z$:固定 $x$ 和 $y$,求解 $\arg\min_z L_\rho(x, z, y)$。 更新乘子 $y$:按梯度上升方式更新: $y := y + \rho(Ax + Bz - c)$ 迭代求解 重复上述步骤,直到原始残差和对偶残差满足收敛条件(如 $|Ax+Bz-c| < \epsilon$)。 例子 下面给出一个简单的数值例子,展示 ADMM 在求解分解问题时的迭代过程。我们构造如下问题: $$ \begin{aligned} \min_{x, z}\quad & (x-1)^2 + (z-2)^2 \\ \text{s.t.}\quad & x - z = 0. \end{aligned} $$ 注意:由于约束要求 $x=z$,实际问题等价于 $$ \min_ (x-1)^2 + (x-2)^2, $$ 其解析最优解为: $$ 2(x-1)+2(x-2)=4x-6=0\quad\Rightarrow\quad x=1.5, $$ 因此我们希望得到 $x=z=1.5$。 构造 ADMM 框架 将问题写成 ADMM 标准形式: 令 $$ f(x)=(x-1)^2,\quad g(z)=(z-2)^2, $$ 约束写为 $$ x-z=0, $$ 即令 $A=1$、$B=-1$、$c=0$。 增强拉格朗日函数为 $$ L_\rho(x,z,y)=(x-1)^2+(z-2)^2+y(x-z)+\frac{\rho}{2}(x-z)^2, $$ 其中 $y$ 是拉格朗日乘子,$\rho>0$ 是惩罚参数。为简单起见,我们选取 $\rho=1$。 ADMM 的更新公式 针对本问题可以推导出三个更新步骤: $\arg\min_x; $表示在变量 $x$ 的可行范围内,找到使目标函数 $f(x)$ 最小的 $x$ 的具体值。 $k$ 代表当前的迭代次数 更新 $x$: 固定 $z$ 和 $y$,求解 $$ x^{k+1} = \arg\min_x; (x-1)^2 + y^k(x-z^k)+\frac{1}{2}(x-z^k)^2. $$ 对 $x$ 求导并令其为零: $$ 2(x-1) + y^k + (x-z^k)=0 \quad\Rightarrow\quad (2+1)x = 2 + z^k - y^k, $$ 得到更新公式: $$ x^{k+1} = \frac{2+z^k-y^k}{3}. $$ 更新 $z$: 固定 $x$ 和 $y$,求解 $$ z^{k+1} = \arg\min_z; (z-2)^2 - y^kz+\frac{1}{2}(x^{k+1}-z)^2. $$ 注意:由于 $y(x-z)$ 中关于 $z$ 的部分为 $-y^kz$(常数项 $y^kx$ 可忽略),求导得: $$ 2(z-2) - y^k - (x^{k+1}-z)=0 \quad\Rightarrow\quad (2+1)z = 4 + y^k + x^{k+1}, $$ 得到更新公式: $$ z^{k+1} = \frac{4+y^k+x^{k+1}}{3}. $$ 更新 $y$: 按梯度上升更新乘子: $$ y^{k+1} = y^k + \rho,(x^{k+1}-z^{k+1}). $$ 这里 $\rho=1$,所以 $$ y^{k+1} = y^k + \bigl(x^{k+1}-z^{k+1}\bigr). $$ 数值迭代示例 第 1 次迭代: 更新 $x$: $$ x^1 = \frac{2+z^0-y^0}{3}=\frac{2+0-0}{3}=\frac{2}{3}\approx0.667. $$ 更新 $z$: $$ z^1 = \frac{4+y^0+x^1}{3}=\frac{4+0+0.667}{3}\approx\frac{4.667}{3}\approx1.556. $$ 更新 $y$: $$ y^1 = y^0+(x^1-z^1)=0+(0.667-1.556)\approx-0.889. $$ 第 2 次迭代: 更新 $x$: $$ x^2 = \frac{2+z^1-y^1}{3}=\frac{2+1.556-(-0.889)}{3}=\frac{2+1.556+0.889}{3}\approx\frac{4.445}{3}\approx1.4817. $$ 更新 $z$: $$ z^2 = \frac{4+y^1+x^2}{3}=\frac{4+(-0.889)+1.4817}{3}=\frac{4-0.889+1.4817}{3}\approx\frac{4.5927}{3}\approx1.5309. $$ 更新 $y$: $$ y^2 = y^1+(x^2-z^2)\approx -0.889+(1.4817-1.5309)\approx -0.889-0.0492\approx -0.938. $$ 第 3 次迭代: 更新 $x$: $$ x^3 = \frac{2+z^2-y^2}{3}=\frac{2+1.5309-(-0.938)}{3}=\frac{2+1.5309+0.938}{3}\approx\frac{4.4689}{3}\approx1.4896. $$ 更新 $z$: $$ z^3 = \frac{4+y^2+x^3}{3}=\frac{4+(-0.938)+1.4896}{3}\approx\frac{4.5516}{3}\approx1.5172. $$ 更新 $y$: $$ y^3 = y^2+(x^3-z^3)\approx -0.938+(1.4896-1.5172)\approx -0.938-0.0276\approx -0.9656. $$ 从迭代过程可以看出: $x$ 和 $z$ 的值在不断调整,目标是使两者相等,从而满足约束。 最终随着迭代次数增加,$x$ 和 $z$ 会收敛到约 1.5,同时乘子 $y$ 收敛到 $-1$(这与 KKT 条件相符)。 应用领域 大规模优化 在大数据、机器学习中利用并行计算加速求解。 信号与图像处理 用于去噪、压缩感知等稀疏表示问题。 分布式计算 在多节点协同场景下求解大规模问题。 优点与局限性 优点 局限性 分布式计算能力 小规模问题可能收敛较慢 支持稀疏性和正则化 参数 $\rho$ 需精细调节 收敛性稳定 — KKT 条件 KKT 条件是用于求解约束优化问题的一组必要条件,特别适用于非线性规划问题。当目标函数是非线性的,并且存在约束时,KKT 条件提供了优化问题的最优解的必要条件。 一般形式 考虑优化问题: $$ \min_x f(x) $$ 约束条件: $$ g_i(x) \leq 0, \quad i = 1, 2, \dots, m $$ $$ h_j(x) = 0, \quad j = 1, 2, \dots, p $$ KKT 条件 1. 拉格朗日函数 构造拉格朗日函数: $$ \mathcal{L}(x, \lambda, \mu) = f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x) $$ 其中: $\lambda_i$ 是不等式约束的拉格朗日乘子 $\mu_j$ 是等式约束的拉格朗日乘子 2. 梯度条件(驻点条件) $$ \nabla_x \mathcal{L}(x, \lambda, \mu) = 0 $$ 即: $$ \nabla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{j=1}^p \mu_j \nabla h_j(x) = 0 $$ 3. 原始可行性条件 $$ g_i(x) \leq 0, \quad i = 1, 2, \dots, m $$ $$ h_j(x) = 0, \quad j = 1, 2, \dots, p $$ 4. 对偶可行性条件 $$ \lambda_i \geq 0, \quad i = 1, 2, \dots, m $$ 5. 互补松弛性条件 $$ \lambda_i g_i(x) = 0, \quad i = 1, 2, \dots, m $$ (即:$\lambda_i > 0 \Rightarrow g_i(x) = 0$,或 $g_i(x) < 0 \Rightarrow \lambda_i = 0$) 示例: 我们有以下优化问题: $$ \min_x \quad f(x) = x^2 \\ \text{s.t.} \quad g(x) = x - 1 \leq 0 $$ 首先,我们可以直观地理解这个问题: 目标函数f(x)=x²是一个开口向上的抛物线,无约束时最小值在x=0 约束条件x-1≤0意味着x≤1 所以我们需要在x≤1的范围内找f(x)的最小值 显然,无约束最小值x=0已经满足x≤1的约束,因此x=0就是最优解。但让我们看看KKT条件如何形式化地得出这个结论。 1. 构造拉格朗日函数 拉格朗日函数为: $$ \mathcal{L}(x, \lambda) = x^2 + \lambda(x-1), \quad \lambda \geq 0 $$ 这里λ是拉格朗日乘子,必须非负(因为是不等式约束)。 2. KKT条件 KKT条件包括: 平稳性条件:∇ₓℒ = 0 原始可行性:g(x) ≤ 0 对偶可行性:λ ≥ 0 互补松弛性:λ·g(x) = 0 平稳性条件 对x求导: $$ \frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda = 0 \quad (1) $$ 互补松弛性 $$ \lambda(x-1) = 0 \quad (2) $$ 这意味着有两种情况: 情况1:λ=0 情况2:x-1=0(即x=1) 情况1:λ=0 步骤 计算过程 结果 平稳性条件 $2x + 0 = 0 \Rightarrow x = 0$ $x = 0$ 原始可行性 $g(0) = 0 - 1 = -1 \leq 0$ 满足 对偶可行性 $\lambda = 0 \geq 0$ 满足 互补松弛性 $0 \cdot (-1) = 0$ 满足 情况2:x=1 步骤 计算过程 结果 平稳性条件 $2(1) + \lambda = 0 \Rightarrow \lambda = -2$ $\lambda = -2$ 对偶可行性 $\lambda = -2 \geq 0$ 不满足(乘子为负) 唯一满足所有KKT条件的解是x=0, λ=0。 总结 KKT 条件通过拉格朗日乘子法将约束和目标函数结合,为求解约束优化问题提供了必要的最优性条件。其核心是: 拉格朗日函数的梯度为零 原始约束和对偶约束的可行性 互补松弛性
科研
zy123
4月1日
0
4
0
2025-03-31
KAN
KAN Kolmogorov-Arnold表示定理 该定理表明,任何多元连续函数都可以表示为有限个单变量函数的组合。 对于任意一个定义在$[0,1]^n$上的连续多元函数: $$ f(x_1, x_2, \ldots, x_n), $$ 存在**单变量连续函数** $\phi_{q}$ 和 $\psi_{q,p}$(其中 $q = 1, 2, \ldots, 2n+1$,$p = 1, 2, \ldots, n$),使得: $$ f(x_1, \ldots, x_n) = \sum_{q=1}^{2n+1} \phi_{q}\left( \sum_{p=1}^{n} \psi_{q,p}(x_p) \right). $$ 即,$f$可以表示为$2n+1$个“外层函数”$\phi_{q}$和$n \times (2n+1)$个“内层函数”$\psi_{q,p}$的组合。 和MLP的联系 Kolmogorov-Arnold定理 神经网络(MLP) 外层函数 $\phi_q$ 的叠加 输出层的加权求和(线性组合) + 激活函数 内层函数 $\psi_{q,p}$ 的线性组合 隐藏层的加权求和 + 非线性激活函数 固定 $2n+1$ 个“隐藏单元” 隐藏层神经元数量可以自由设计,依赖于网络的深度和宽度 严格的数学构造(存在性证明) 通过数据驱动的学习(基于梯度下降等方法)来优化参数 和MLP的差异 浅层结构(一个隐藏层)的数学表达与模型设计 模型 数学公式 模型设计 MLP $f(x) \approx \sum_{i=1}^{N} a_i \sigma(w_i \cdot x + b_i)$ 线性变换后再跟非线性激活函数(RELU) KAN $f(x) = \sum_{q=1}^{2n+1} \Phi_q \left( \sum_{p=1}^n \phi_{q,p}(x_p) \right)$ 可学习激活函数(如样条)在边上,求和操作在神经元上 边上的可学习函数: $\phi_{q,p}(x_p)$(如B样条) 求和操作:$\sum_{p=1}^n \phi_{q,p}(x_p)$ 深层结构的数学表达与模型设计 模型 数学公式 模型设计 MLP $\text{MLP}(x) = (W_3 \circ \sigma_2 \circ W_2 \circ \sigma_1 \circ W_1)(x)$ 交替的线性层($W_i$)和固定非线性激活函数($\sigma_i$)。 KAN $\text{KAN}(x) = (\Phi_3 \circ \Phi_2 \circ \Phi_1)(x)$ 每一层都是单变量函数的组合($\Phi_i$),每一层的激活函数都可以进行学习 传统MLP的缺陷 梯度消失和梯度爆炸: 与其他传统的激活函数(如 Sigmoid 或 Tanh)一样,MLP 在进行反向传播时有时就会遇到梯度消失/爆炸的问题,尤其当网络层数过深时。当它非常小或为负大,网络会退化;连续乘积会使得梯度慢慢变为 0(梯度消失)或变得异常大(梯度爆炸),从而阻碍学习过程。 参数效率: MLP 常使用全连接层,每层的每个神经元都与上一层的所有神经元相连。尤其是对于大规模输入来说,这不仅增加了计算和存储开销,也增加了过拟合的风险。效率不高也不够灵活。 处理高维数据能力有限:MLP 没有利用数据的内在结构(例如图像中的局部空间相关性或文本数据的语义信息)。例如,在图像处理中,MLP 无法有效地利用像素之间的局部空间联系,这很典型在图像识别等任务上的性能不如卷积神经网络(CNN)。 长依赖问题: 虽然 MLP 理论上可以逼近任何函数,但在实际应用中,它们很难捕捉到序列中的长依赖关系(例如句子跨度很长)。这让人困惑:如何把前后序列的信息互相处理?而自注意力(如 transformer)在这类任务中表现更好。 但无论CNN/RNN/transformer怎么改进,都躲不掉MLP这个基础模型根上的硬伤,即线性组合+激活函数的模式。 KAN网络 主要贡献: 过去的类似想法受限于原始的Kolmogorov-Arnold表示定理(两层网络,宽度为2n+12n+1),未能利用现代技术(如反向传播)进行训练。 KAN通过推广到任意宽度和深度的架构,解决了这一限制,同时通过实验验证了KAN在“AI + 科学”任务中的有效性,兼具高精度和可解释性。 B样条(B-spline) 是一种通过分段多项式函数的线性组合构造的光滑曲线,其核心思想是利用局部基函数(称为B样条基函数)来表示整个曲线。 形式上,一个B样条函数通常表示为基函数的线性组合: $$ S(t) = \sum_{i=0}^{n} c_i \cdot B_i(t) $$ 其中: $B_i(t)$ 是 B样条基函数(basis functions); $c_i$ 是 控制点 或系数(可以来自数据、拟合、插值等); $S(t)$ 是最终的 B样条曲线 或函数。 每个基函数只在某个局部区间内非零,改变一个控制点只会影响曲线的局部形状。 示例:基函数定义 $B_0(t)$ - 支撑区间[0,1] $$ B_0(t) = \begin{cases} 1 - t, & 0 \leq t < 1,\\ 0, & \text{其他区间}. \end{cases} $$ $B_1(t)$ - 支撑区间[0,2] $$ B_1(t) = \begin{cases} t, & 0 \leq t < 1, \\ 2 - t, & 1 \leq t < 2, \\ 0, & \text{其他区间}. \end{cases} $$ $B_2(t)$ - 支撑区间[1,3] $$ B_2(t) = \begin{cases} t - 1, & 1 \leq t < 2, \\ 3 - t, & 2 \leq t < 3, \\ 0, & \text{其他区间}. \end{cases} $$ $B_3(t)$ - 支撑区间[2,4] $$ B_3(t) = \begin{cases} t - 2, & 2 \leq t < 3, \\ 4 - t, & 3 \leq t \leq 4, \\ 0, & \text{其他区间}. \end{cases} $$ 假设用该基函数对$f(t) = \sin\left(\dfrac{\pi t}{4}\right)$在[0,4]区间上拟合 $$ S(t) = 0 \cdot B_0(t) + 0.7071 \cdot B_1(t) + 1 \cdot B_2(t) + 0.7071 \cdot B_3(t) $$ 网络结构: 左图: 节点(如$x_{l,i}$)表示第$l$层第$i$个神经元的输入值 边(如$\phi_{l,j,i}$)表示可学习的激活函数(权重) 下一层节点的值计算: $$x_{l+1,j} = \sum_i \phi_{l,j,i}(x_{l,i})$$ 右图:
科研
zy123
3月31日
0
4
0
2025-03-23
线性代数
线性代数 线性变换 每列代表一个基向量,行数代码这个基向量所张成空间的维度,二行三列表示二维空间的三个基向量。 二维标准基矩阵(单位矩阵): $$ \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | \ \mathbf{i} & \mathbf{j} \ | & | \end{bmatrix} $$ 三维标准基矩阵(单位矩阵): $$ \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | & | \ \mathbf{i} & \mathbf{j} & \mathbf{k} \ | & | & | \end{bmatrix} $$ 矩阵乘向量 在 3blue1brown 的“线性代数的本质”系列中,他把矩阵乘向量的运算解释为线性组合和线性变换的过程。具体来说: 计算方法 给定一个 $ m \times n $ 的矩阵 $ A $ 和一个 $ n $ 维向量 $ \mathbf = [x_1, x_2, \dots, x_n]^T $,矩阵与向量的乘积可以表示为: $$ A\mathbf = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n $$ 其中,$\mathbf{a}_i$ 表示 $ A $ 的第 $ i $ 列向量。也就是说,我们用向量 $\mathbf $ 的各个分量作为权重,对矩阵的各列进行线性组合。 例如:矩阵 $ A $ 是一个二阶矩阵: $$ A = \begin{bmatrix} a & b \ c & d \end{bmatrix} $$ 向量 $ \mathbf $ 是一个二维列向量: $$ \mathbf = \begin{bmatrix} x \ y \end{bmatrix} $$ 可以将这个乘法看作是用 $ x $ 和 $ y $ 这两个数,分别对矩阵的两列向量进行加权: $$ A\mathbf = x \cdot \begin{bmatrix} a \ c \end{bmatrix} + y \cdot \begin{bmatrix} b \ d \end{bmatrix} $$ 也就是说,矩阵乘向量的结果,是“矩阵每一列”乘以“向量中对应的分量”,再把它们加起来。 背后的思想 分解为基向量的组合: 任何向量都可以看作是标准基向量的线性组合。矩阵 $ A $ 在几何上代表了一个线性变换,而标准基向量在这个变换下会分别被映射到新的位置,也就是矩阵的各列。 构造变换: 当我们用 $\mathbf $ 的分量对这些映射后的基向量加权求和时,就得到了 $ \mathbf $ 在变换后的结果。这种方式不仅方便计算,而且直观地展示了线性变换如何“重塑”空间——每一列告诉我们基向量被如何移动,然后这些移动按比例组合出最终向量的位置。 矩阵乘矩阵 当你有两个矩阵 $ A $ 和 $ B $,矩阵乘法 $ AB $ 实际上代表的是: 先对向量应用 $ B $ 的线性变换,再应用 $ A $ 的线性变换。 也就是说: $$ (AB)\vec{v} = A(B\vec{v}) $$ 3blue1brown 的直觉解释: 矩阵 B:提供了新的变换后基向量 记住:矩阵的每一列,表示标准基向量 $ \mathbf{e}_1, \mathbf{e}_2 $ 在变换后的样子。 所以: $ B $ 是一个变换,它把空间“拉伸/旋转/压缩”成新的形状; $ A $ 接着又对这个已经变形的空间进行变换。 例: $$ A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} $$ $ B $ 的列是: $ \begin{bmatrix} 1 \ 1 \end{bmatrix} $ → 第一个标准基向量变形后的位置 $ \begin{bmatrix} -1 \ 1 \end{bmatrix} $ → 第二个标准基向量变形后的位置 我们计算: $ A \cdot \begin{bmatrix} 1 \ 1 \end{bmatrix} = \begin{bmatrix} 2 \ 3 \end{bmatrix} $ $ A \cdot \begin{bmatrix} -1 \ 1 \end{bmatrix} = \begin{bmatrix} -2 \ 3 \end{bmatrix} $ 所以: $$ AB = \begin{bmatrix} 2 & -2 \\ 3 & 3 \end{bmatrix} $$ 这个新矩阵 $ AB $ 的列向量,表示标准基向量在经历了 “先 B 再 A” 的变换后,落在了哪里。 行列式 3blue1brown讲解行列式时,核心在于用几何直观来理解行列式的意义: 缩放比例!!! 体积(或面积)的伸缩因子 对于二维空间中的2×2矩阵,行列式的绝对值表示该矩阵作为线性变换时,对单位正方形施加变换后得到的平行四边形的面积。类似地,对于三维空间中的3×3矩阵,行列式的绝对值就是单位立方体变换后的平行六面体的体积。也就是说,行列式告诉我们这个变换如何“拉伸”或“压缩”空间。 方向的指示(有向面积或体积) 行列式不仅仅给出伸缩倍数,还通过正负号反映了变换是否保持了原来的方向(正)还是发生了翻转(负)。例如,在二维中,如果行列式为负,说明变换过程中存在翻转(类似镜像效果)。 变换的可逆性 当行列式为零时,说明该线性变换把空间压缩到了低维(例如二维变一条线,三维变成一个平面或线),这意味着信息在变换过程中丢失,变换不可逆。 逆矩阵、列空间、零空间 逆矩阵 逆矩阵描述了一个矩阵所代表的线性变换的**“反过程”**。假设矩阵 $A$ 对空间做了某种变换(比如旋转、拉伸或压缩),那么 $A^{-1}$ 就是把这个变换“逆转”,把变换后的向量再映射回原来的位置。 前提是$A$ 是可逆的,即它对应的变换不会把空间压缩到更低的维度。 秩 秩等于矩阵列向量(或行向量)所生成的空间的维数。例如,在二维中,如果一个 $2 \times 2$ 矩阵的秩是 2,说明这个变换把平面“充满”;如果秩为 1,则所有输出都落在一条直线上,说明变换“丢失”了一个维度。 列空间 列空间是矩阵所有列向量的线性组合所构成的集合(也可以说所有可能的输出向量$A\mathbf $所构成的集合)。 比如一个二维变换的列空间可能是整个平面,也可能只是一条直线,这取决于矩阵的秩。 零空间 零空间(又称核、kernel)是所有在该矩阵作用(线性变换$A$)下变成零向量的输入向量的集合。 它展示了变换中哪些方向被“压缩”成了一个点(原点)。例如,在三维中,如果一个矩阵将所有向量沿某个方向压缩到零,那么这个方向构成了零空间。 零空间解释了$Ax=0$的解的集合,就是齐次的通解。如果满秩,零空间只有唯一解零向量。 求解线性方程 设线性方程组写作 $$ A\mathbf = \mathbf{b} $$ 这相当于在问:“有没有一个向量 $\mathbf $ ,它经过矩阵 $A$ 的变换后,恰好落在 $\mathbf{b}$ 所在的位置?” 如果 $\mathbf{b}$ 落在 $A$ 的列空间内,那么就存在解。解可能是唯一的(当矩阵满秩时)或无穷多(当零空间非平凡时)。 如果 $\mathbf{b}$ 不在列空间内,则说明 $\mathbf{b}$ 不可能由 $A$ 的列向量线性组合得到,这时方程组无解。 唯一解对应于所有这些几何对象在一点相交; 无限多解对应于它们沿着某个方向重合; 无解则说明这些对象根本没有公共交点。 基变换 新基下的变换矩阵 $A_C$ 为: $$ A_C = P^{-1} A P $$ $P$:从原基到新基的基变换矩阵(可逆),$P$的每一列代表了新基中的一个基向量 $A$:线性变换 $T$ 在原基下的矩阵表示 原来空间中进行$A$线性变换等同于新基的视角下进行 $A_C$ 变换 点积、哈达马积 向量点积(Dot Product) 3blue1brown认为,两个向量的点乘就是将其中一个向量转为线性变换。 假设有两个向量 $$ \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}. $$ $$ \mathbf{v} \cdot \mathbf{w} =\begin{bmatrix} v_1 & v_2 \end{bmatrix}\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}=v_1w_1 + v_2w_2.. $$ 结果: 点积的结果是一个标量(即一个数)。 几何意义: 点积可以衡量两个向量的相似性,或者计算一个向量在另一个向量方向上的投影。 哈达马积(Hadamard Product) 定义: 对于两个向量 $\mathbf{u} = [u_1, u_2, \dots, u_n]$ 和 $\mathbf{v} = [v_1, v_2, \dots, v_n]$,它们的哈达马积定义为: $$ \mathbf{u} \circ \mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n]. $$ 结果: 哈达马积的结果是一个向量,其每个分量是对应位置的分量相乘。 几何意义: 哈达马积通常用于逐元素操作,比如在神经网络中对两个向量进行逐元素相乘。 矩阵也有哈达马积!。 特征值和特征向量 设矩阵: $$ A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} $$ 步骤 1:求特征值 构造特征方程: $$ \det(A - \lambda I) = \det\begin{bmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix} = (2-\lambda)(3-\lambda) - 0 = 0 $$ 解得: $$ (2-\lambda)(3-\lambda) = 0 \quad \Longrightarrow \quad \lambda_1 = 2,\quad \lambda_2 = 3 $$ 步骤 2:求特征向量 对于 $\lambda_1 = 2$: 解方程: $$ (A - 2I)\mathbf = \begin{bmatrix} 2-2 & 1 \\ 0 & 3-2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 从第一行 $x_2 = 0$。因此特征向量可以写成: $$ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\text{任意非零常数倍}) $$ 对于 $\lambda_2 = 3$: 解方程: $$ (A - 3I)\mathbf = \begin{bmatrix} 2-3 & 1 \\ 0 & 3-3 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1+x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 从第一行得 $-x_1 + x_2 = 0$ 或 $x_2 = x_1$。因此特征向量可以写成: $$ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (\text{任意非零常数倍}) $$ 设一个对角矩阵: $$ D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} $$ $$ \lambda_1 = d_1,\quad \lambda_2 = d_2 $$ 对角矩阵的特征方程为: $$ \det(D - \lambda I) = (d_1 - \lambda)(d_2 - \lambda) = 0 $$ 因此特征值是: $$ \lambda_1 = d_1,\quad \lambda_2 = d_2 $$ 对于 $\lambda_1 = d_1$,方程 $(D-d_1I)\mathbf =\mathbf{0}$ 得到: $$ \begin{bmatrix} 0 & 0 \\ 0 & d_2-d_1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ (d_2-d_1)x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 若 $d_1 \neq d_2$,则必须有 $x_2=0$,而 $x_1$ 可任意取非零值,因此特征向量为: $$ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} $$ 对于 $\lambda_2 = d_2$,类似地解得: $$ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} $$ 矩阵乘法 全连接神经网络 其中: $a^{(0)}$ 是输入向量,表示当前层的输入。 $\mathbf{W}$ 是权重矩阵,表示输入向量到输出向量的线性变换。 $b$ 是偏置向量,用于调整输出。 $\sigma$ 是激活函数(如 ReLU、Sigmoid 等),用于引入非线性。 输入向量 $a^{(0)}$: $$ a^{(0)} = \begin{pmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{pmatrix} $$ 这是一个 $n+1$ 维的列向量,表示输入特征。 权重矩阵 $\mathbf{W}$: $$ \mathbf{W} = \begin{pmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \\ \end{pmatrix} $$ 这是一个 $k \times (n+1)$ 的矩阵,其中 $k$ 是输出向量的维度,$n+1$ 是输入向量的维度。 偏置向量 $b$: $$ b = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{pmatrix} $$ 这是一个 $k$ 维的列向量,用于调整输出。 在传统的连续时间 RNN 写法里,常见的是 $$ \sum_{j} W_{ij} \, \sigma(x_j), $$ 这代表对所有神经元 $j$ 的激活 $\sigma(x_j)$ 做加权求和,再求和到神经元 $i$。 如果拆开来看,每个输出分量也都含一个求和 $\sum_{j}$: 输出向量的第 1 个分量(记作第 1 行的结果): $$ (W_r x)_1 = 0.3 \cdot x_1 + (-0.5) \cdot x_2 = 0.3 \cdot 2 + (-0.5) \cdot 1 = 0.6 - 0.5 = 0.1. $$ 输出向量的第 2 个分量(第 2 行的结果): $$ (W_r x)_2 = 1.2 \cdot x_1 + 0.4 \cdot x_2 = 1.2 \cdot 2 + 0.4 \cdot 1 = 2.4 + 0.4 = 2.8. $$ 在使用矩阵乘法时,你可以写成 $$ y = W_r \, \sigma(x), $$ 其中 $\sigma$ 表示对 $x$ 的各分量先做激活,接着用 $W_r$ 乘上去。这就是把“$\sum_j \dots$”用矩阵乘法隐藏了。 $$ \begin{pmatrix} 0.3 & -0.5\\ 1.2 & \;\,0.4 \end{pmatrix} \begin{pmatrix} 2\\ 1 \end{pmatrix} = \begin{pmatrix} 0.3 \times 2 + (-0.5) \times 1\\[6pt] 1.2 \times 2 + 0.4 \times 1 \end{pmatrix} = \begin{pmatrix} 0.6 - 0.5\\ 2.4 + 0.4 \end{pmatrix} = \begin{pmatrix} 0.1\\ 2.8 \end{pmatrix}. $$ 奇异值 定义 对于一个 $m \times n$ 的矩阵 $A$,其奇异值是非负实数 $\sigma_1, \sigma_2, \ldots, \sigma_r$($r = \min(m, n)$),满足存在正交矩阵 $U$ 和 $V$,使得: $$ A = U \Sigma V^T $$ 其中,$\Sigma$ 是对角矩阵,对角线上的元素即为奇异值。 主要特点 非负性:奇异值总是非负的。 对角矩阵的奇异值是对角线元素的绝对值。 降序排列:通常按从大到小排列,即 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$。 矩阵分解:奇异值分解(SVD)将矩阵分解为三个矩阵的乘积,$U$ 和 $V$ 是正交矩阵,$\Sigma$ 是对角矩阵。 应用广泛:奇异值在数据降维、噪声过滤、图像压缩等领域有广泛应用。 奇异值求解 奇异值可以通过计算矩阵 $A^T A$ 或 $A A^T$ 的特征值的平方根得到。 步骤 1:计算 $A^T A$ 首先,我们计算矩阵 $A$ 的转置 $A^T$: $$ A^T = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} $$ 然后,计算 $A^T A$: $$ A^T A = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix} $$ 步骤 2:计算 $A^T A$ 的特征值 接下来,我们计算 $A^T A$ 的特征值。特征值 $\lambda$ 满足以下特征方程: $$ \det(A^T A - \lambda I) = 0 $$ 即: $$ \det \begin{pmatrix} 9 - \lambda & 0 \\ 0 & 16 - \lambda \end{pmatrix} = (9 - \lambda)(16 - \lambda) = 0 $$ 解这个方程,我们得到两个特征值: $$ \lambda_1 = 16, \quad \lambda_2 = 9 $$ 步骤 3:计算奇异值 奇异值是特征值的平方根,因此我们计算: $$ \sigma_1 = \sqrt{\lambda_1} = \sqrt{16} = 4 $$ $$ \sigma_2 = \sqrt{\lambda_2} = \sqrt{9} = 3 $$ 结果 矩阵 $A$ 的奇异值为 4 和 3。 奇异值分解 给定一个实矩阵 $A$(形状为 $m \times n$),SVD 是将它分解为: $$ A = U \Sigma V^T $$ 构造 $A^T A$ 计算对称矩阵 $A^T A$($n \times n$) 求解 $A^T A$ 的特征值和特征向量 设特征值为 $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$ 对应特征向量为 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ 计算奇异值 $\sigma_i = \sqrt{\lambda_i}$ 构造矩阵 $V$ 将正交归一的特征向量作为列向量:$V = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n]$ 求矩阵 $U$ 对每个非零奇异值:$\mathbf{u}_i = \frac{A \mathbf{v}_i}{\sigma_i}$ 标准化(保证向量长度为 1)后组成 $U = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_m]$ 构造 $\Sigma$ 对角线放置奇异值:$\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_p)$,$p=\min(m,n)$ 范数 L2范数定义: 对于一个向量 $\mathbf{w} = [w_1, w_2, \dots, w_n]$,L2 范数定义为 $$ \|\mathbf{w}\|_2 = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2} $$ 假设一个权重向量为 $\mathbf{w} = [3, -4]$,则 $$ \|\mathbf{w}\|_2 = \sqrt{3^2 + (-4)^2} = \sqrt{9+16} = \sqrt{25} = 5. $$ 用途: 正则化(L2正则化/权重衰减):在训练过程中,加入 L2 正则项有助于防止模型过拟合。正则化项通常是权重的 L2 范数的平方,例如 $$ \lambda \|\mathbf{w}\|_2^2 $$ 其中 $\lambda$ 是正则化系数。 梯度裁剪:在 RNN 等深度网络中,通过计算梯度的 L2 范数来判断是否需要对梯度进行裁剪,从而防止梯度爆炸。 具体例子: 假设我们有一个简单的线性回归模型,损失函数为均方误差(MSE): $$ L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^N (y_i - \mathbf{w}^T \mathbf _i)^2 $$ 其中,$N$ 是样本数量,$y_i$ 是第 $i$ 个样本的真实值,$\mathbf _i$ 是第 $i$ 个样本的特征向量,$\mathbf{w}$ 是权重向量。 加入 L2 正则项后,新的损失函数为: $$ L_{\text{reg}}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^N (y_i - \mathbf{w}^T \mathbf _i)^2 + \lambda \|\mathbf{w}\|_2^2 $$ 在训练过程中,优化算法会同时最小化原始损失函数和正则项,从而在拟合训练数据的同时,避免权重值过大。 梯度更新 在梯度下降算法中,权重 $\mathbf{w}$ 的更新公式为: $$ \mathbf{w} \leftarrow \mathbf{w} - \eta \nabla L_{\text{reg}}(\mathbf{w}) $$ 其中,$\eta$ 是学习率,$\nabla L_{\text{reg}}(\mathbf{w})$ 是损失函数关于 $\mathbf{w}$ 的梯度。 对于加入 L2 正则项的损失函数,梯度为: $$ \nabla L_{\text{reg}}(\mathbf{w}) = \nabla L(\mathbf{w}) + 2\lambda \mathbf{w} $$ 因此,权重更新公式变为: $$ \mathbf{w} \leftarrow \mathbf{w} - \eta (\nabla L(\mathbf{w}) + 2\lambda \mathbf{w}) $$ 通过加入 L2 正则项,模型在训练过程中不仅会最小化原始损失函数,还会尽量减小权重的大小,从而避免过拟合。正则化系数 $\lambda$ 控制着正则化项的强度,较大的 $\lambda$ 会导致权重更小,模型更简单,但可能会欠拟合;较小的 $\lambda$ 则可能无法有效防止过拟合。因此,选择合适的 $\lambda$ 是使用 L2 正则化的关键。 矩阵的元素级范数 L0范数(但它 并不是真正的范数): $$ \|A\|_0 = \text{Number of non-zero elements in } A = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{I}(a_{ij} \neq 0) $$ 其中: $\mathbb{I}(\cdot)$ 是指示函数(若 $a_{ij} \neq 0$ 则取 1,否则取 0)。 如果矩阵 $A$ 有 $k$ 个非零元素,则 $|A|_0 = k$。 衡量稀疏性: $|A|_0$ 越小,矩阵 $A$ 越稀疏(零元素越多)。 在压缩感知、低秩矩阵恢复、稀疏编码等问题中,常用 $L_0$ 范数来 约束解的稀疏性。 非凸、非连续、NP难优化: $L_0$ 范数是 离散的,导致优化问题通常是 NP难 的(无法高效求解)。 因此,实际应用中常用 $L_1$ 范数(绝对值之和)作为凸松弛替代: $$ |A|1 = \sum{i,j} |a_{ij}| $$ NP难问题: 可以在多项式时间内 验证一个解是否正确,但 不一定能在多项式时间内找到解。 L1范数:元素绝对值和 $$ \|A\|_1 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| $$ 范数类型 定义 性质 优化难度 用途 $L_0$ $\sum_{i,j} \mathbb{I}(a_{ij} \neq 0)$ 非凸、离散、不连续 NP难 精确稀疏性控制 $L_1$ $\sum_{i,j} a_{ij} $ 凸、连续 矩阵的核范数 核范数,又称为迹范数(trace norm),是矩阵范数的一种,定义为矩阵所有奇异值之和。对于一个矩阵 $A$(假设其奇异值为 $\sigma_1, \sigma_2, \dots, \sigma_r$),其核范数定义为: $$ \|A\|_* = \sum_{i=1}^{r} \sigma_i, $$ 其中 $r$ 是矩阵 $A$ 的秩。 核范数的主要特点 凸性 核范数是一个凸函数,因此在优化问题中常用作替代矩阵秩的惩罚项(因为直接最小化矩阵秩是一个NP困难的问题)。 低秩逼近 在矩阵补全、低秩矩阵恢复等应用中,核范数被用来鼓励矩阵解具有低秩性质,因其是矩阵秩的凸松弛。 与SVD的关系 核范数直接依赖于矩阵的奇异值,计算时通常需要奇异值分解(SVD)。 Frobenius 范数 对于一个矩阵 $A \in \mathbb{R}^{m \times n}$,其 Frobenius 范数定义为 $$ \|A\|_F = \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n} a_{ij}^2} $$ 这个定义与向量 $L2$ 范数类似,只不过是对矩阵中所有元素取平方和后再开平方。 对于归一化的向量$\mathbf _m$ ,其外积矩阵 $\mathbf _m \mathbf _m^T$,其元素为 $(\mathbf _m \mathbf m^T){ij} = x_i x_j$,因此: $$ \|\mathbf _m \mathbf _m^T\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |x_i x_j|^2 } = \sqrt{\left( \sum_{i=1}^n x_i^2 \right) \left( \sum_{j=1}^n x_j^2 \right) } = \|\mathbf _m\|_2 \cdot \|\mathbf _m\|_2 = 1. $$ 例: 设归一化向量 $\mathbf = \begin{bmatrix} \frac{1}{\sqrt{2}} \ \frac{1}{\sqrt{2}} \end{bmatrix}$,其外积矩阵为: $$ \mathbf \mathbf ^T = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} $$ 计算 Frobenius 范数: $$ \|\mathbf \mathbf ^T\|_F = \sqrt{ \left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2 } = \sqrt{4 \cdot \frac{1}{4}} = 1. $$ 如果矩阵 $A$ 的奇异值为 $\sigma_1, \sigma_2, \ldots, \sigma_n$,则: $$ \|A\|_F = \sqrt{\sum_{i=1}^n \sigma_i^2} $$ 这使得 Frobenius 范数在低秩近似和矩阵分解(如 SVD)中非常有用。 设矩阵 $A$ 为: $$ A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} $$ 定义: $$ \|A\|_F = \sqrt{1^2 + 0^2 + 0^2 + 2^2 + 1^2 + 1^2 } = \sqrt{1 + 0 + 0 + 4 + 1 + 1} = \sqrt{7} $$ 验证: 计算 $A^T A$: $$ A^T A = \begin{bmatrix} 1 & 0 & 1 \ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \ 0 & 2 \ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \ 1 & 5 \end{bmatrix} $$ 求 $A^T A$ 的特征值(即奇异值的平方): $$ \det(A^T A - \lambda I) = \lambda^2 - 7\lambda + 9 = 0 \implies \lambda = \frac{7 \pm \sqrt{13}}{2} $$ 因此: $$ \sigma_1 = \sqrt{\frac{7 + \sqrt{13}}{2}}, \quad \sigma_2 = \sqrt{\frac{7 - \sqrt{13}}{2}} $$ 验证 Frobenius范数: $$ \sigma_1^2 + \sigma_2^2 = \frac{7 + \sqrt{13}}{2} + \frac{7 - \sqrt{13}}{2} = 7 $$ 所以: $$ |A|_F = \sqrt{7} $$ 公式正确! 迹和 Frobenius 范数的关系: $$ \|A\|_F^2 = \text{tr}(A^* A) $$ 这表明 Frobenius 范数的平方就是 $A^* A$ 所有特征值之和。而 $A^* A$ 的特征值开方就是A的奇异值。 最大范数 矩阵的最大范数(也称为 元素级无穷范数 或 一致范数)定义为矩阵所有元素绝对值的最大值: $$ \|A\|_{\max} = \max_{i,j} |A_{ij}| $$ 它衡量的是矩阵中绝对值最大的元素,适用于逐元素(element-wise)分析。 如果比较两个矩阵 $A$ 和 $B$,它们的误差矩阵 $E = A - B$ 的最大范数为: $$ \|A - B\|_{\max} = \max_{i,j} |A_{ij} - B_{ij}| $$ 意义: 如果 $|A - B|_{\max} \leq \epsilon$,说明 $A$ 和 $B$ 的所有对应元素的误差都不超过 $\epsilon$。 对于任意 $m \times n$ 的矩阵 $A$,以下不等式成立: $$ \|A\|_{\max} \leq \|A\|_F \leq \sqrt{mn} \cdot \|A\|_{\max} $$ 矩阵的迹 迹的定义 对于一个 $n \times n$ 的矩阵 $B$,其迹(trace)定义为矩阵对角线元素之和: $$ \text{tr}(B) = \sum_{i=1}^n B_{ii} $$ 迹与特征值的关系 对于一个 $n \times n$ 的矩阵 $B$,其迹等于其特征值之和。即: $$ \text{tr}(B) = \sum_{i=1}^n \lambda_i $$ 其中 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 是矩阵 $B$ 的特征值。 应用到 $A^ A$* 对于矩阵 $A^* A$(如果 $A$ 是实矩阵,则 $A^* = A^T$),它是一个半正定矩阵,其特征值是非负实数。 $A^* A$ 的迹还与矩阵 $A$ 的 Frobenius 范数有直接关系。具体来说: $$ \|A\|_F^2 = \text{tr}(A^* A) $$ 迹的基本性质 迹是一个线性运算,即对于任意标量 $c_1, c_2$ 和矩阵 $A, B$,有: $$ \text{tr}(c_1 A + c_2 B) = c_1 \text{tr}(A) + c_2 \text{tr}(B) $$ 对于任意矩阵 $A, B, C$,迹满足循环置换性质: $$ \text{tr}(ABC) = \text{tr}(CAB) = \text{tr}(BCA) $$ 注意:迹的循环置换性不意味着 $\text{tr}(ABC) = \text{tr}(BAC)$,除非矩阵 $A, B, C$ 满足某些特殊条件(如对称性)。 酉矩阵 酉矩阵是一种复矩阵,其满足下面的条件:对于一个 $n \times n$ 的复矩阵 $U$,如果有 $$ U^* U = U U^* = I, $$ 其中 $U^*$ 表示 $U$ 的共轭转置(先转置再取复共轭),而 $I$ 是 $n \times n$ 的单位矩阵,那么 $U$ 就被称为酉矩阵。简单来说,酉矩阵在复内积空间中保持内积不变,相当于在该空间中的“旋转”或“反射”。 如果矩阵的元素都是实数,那么 $U^*$ 就等于 $U^T$(转置),这时酉矩阵就退化为正交矩阵。 考虑二维旋转矩阵 $$ U = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}. $$ 当 $\theta$ 为任意实数时,这个矩阵满足 $$ U^T U = I, $$ 所以它是一个正交矩阵,同时也属于酉矩阵的范畴。 例如,当 $\theta = \frac{\pi}{4}$(45°)时, $$ U = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}. $$ 正定\正半定矩阵 正定矩阵(PD) $$ A \text{ 正定} \iff \forall, x \in \mathbb{R}^n \setminus {0}, \quad x^T A x > 0. $$ 正半定矩阵(PSD) $$ A \text{ 正半定} \iff \forall, x \in \mathbb{R}^n, \quad x^T A x \ge 0. $$ PD:所有特征值都严格大于零。 $\lambda_i(A)>0,;i=1,\dots,n$。 PSD:所有特征值都非负。 $\lambda_i(A)\ge0,;i=1,\dots,n$。 拉普拉斯矩阵是正半定矩阵! 对于任意实矩阵 $A$(大小为 $m\times n$),矩阵 $B = A^T A\quad(\text{大小为 }n\times n).$是半正定矩阵 显然 $$ B^T = (A^T A)^T = A^T (A^T)^T = A^T A = B, $$ 所以 $B$ 是对称矩阵。 对任意向量 $x\in\mathbb R^n$,有 $$ x^T B,x = x^T (A^T A) x = (Ax)^T (Ax) = |Ax|^2 ;\ge;0. $$ 因此 $B$ 总是 正半定(PSD) 的。 对称非负矩阵分解 $$ A≈HH^T $$ 1. 问题回顾 给定一个对称非负矩阵 $A\in\mathbb{R}^{n\times n}$,我们希望找到一个非负矩阵 $H\in\mathbb{R}^{n\times k}$ 使得 $$ A \approx HH^T. $$ 为此,我们可以**最小化目标函数(损失函数)** $$ f(H)=\frac{1}{2}\|A-HH^T\|_F^2, $$ 其中 $\|\cdot\|_F$ 表示 Frobenius 范数,定义为矩阵所有元素的平方和的平方根。 $| A - H H^T |_F^2$ 表示矩阵 $A - H H^T$ 的所有元素的平方和。 2. 梯度下降方法 2.1 计算梯度 目标函数(损失函数)是 $$ f(H)=\frac{1}{2}\|A-HH^T\|_F^2. $$ $$ \|M\|_F^2 = \operatorname{trace}(M^T M), $$ 因此,目标函数可以写成: $$ f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^T\bigl(A-HH^T\bigr)\Bigr]. $$ 注意到 $A$ 和$HH^T$ 都是对称矩阵,可以简化为: $$ f(H)=\frac{1}{2}\operatorname{trace}\Bigl[\bigl(A-HH^T\bigr)^2\Bigr]. $$ 展开后得到 $$ f(H)=\frac{1}{2}\operatorname{trace}\Bigl[A^2 - 2AHH^T + (HH^T)^2\Bigr]. $$ 其中 $\operatorname{trace}(A^2)$ 与 $H$ 无关,可以看作常数,不影响梯度计算。 计算 $\nabla_H \operatorname{trace}(-2 A H H^T)$ $$ \nabla_H \operatorname{trace}(-2 A H H^T) = -4 A H $$ 计算 $\nabla_H \operatorname{trace}((H H^T)^2)$ $$ \nabla_H \operatorname{trace}((H H^T)^2) = 4 H H^T H $$ 将两部分梯度合并: $$ \nabla_H f(H) = \frac{1}{2}(4 H H^T H - 4 A H )= 2(H H^T H - A H) $$ 2.2 梯度下降更新 设学习率为 $\eta>0$,则梯度下降的基本更新公式为: $$ H \leftarrow H - \eta\, \nabla_H f(H) = H - 2\eta\Bigl(HH^T H - A H\Bigr). $$ 由于我们要求 $H$ 中的元素保持非负,所以每次更新之后通常需要进行投影: $$ H_{ij} \leftarrow \max\{0,\,H_{ij}\}. $$ 这种方法称为投影梯度下降,保证每一步更新后 $H$ 满足非负约束。 3. 举例说明 设对称非负矩阵: $$ A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad k=1, \quad H \in \mathbb{R}^{2 \times 1} $$ 初始化 $H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,学习率 $\eta = 0.01$。 迭代步骤: 初始 ( H^{(0)} ): $$ H^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad H^{(0)}(H^{(0)})^T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. $$ 目标函数值: $$ f(H^{(0)}) = \frac{1}{2} \left( (2-1)^2 + 2(1-1)^2 + (2-1)^2 \right) = 1. $$ 计算梯度: $$ HH^T H = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad AH = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, $$ $$ \nabla_H f(H^{(0)}) = 2 \left( \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}. $$ 更新 ( H ): $$ H^{(1)} = H^{(0)} - 2 \cdot 0.01 \cdot \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1.04 \\ 1.04 \end{bmatrix}. $$ 更新后目标函数: $$ H^{(1)}(H^{(1)})^T = \begin{bmatrix} 1.0816 & 1.0816 \\ 1.0816 & 1.0816 \end{bmatrix}, $$ $$ f(H^{(1)}) = \frac{1}{2} \left( (2-1.0816)^2 + 2(1-1.0816)^2 + (2-1.0816)^2 \right) \approx 0.8464. $$ 一次迭代后目标函数值从 $1.0$ 下降至 $0.8464$
科研
zy123
3月23日
0
8
0
上一页
1
2
3
...
5
下一页